留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

复杂曲面上的自动铺放路径规划方法

赵安安 何大亮 王晗 郭俊刚 柯映林

赵安安, 何大亮, 王晗, 等 . 复杂曲面上的自动铺放路径规划方法[J]. 北京航空航天大学学报, 2022, 48(4): 595-601. doi: 10.13700/j.bh.1001-5965.2020.0619
引用本文: 赵安安, 何大亮, 王晗, 等 . 复杂曲面上的自动铺放路径规划方法[J]. 北京航空航天大学学报, 2022, 48(4): 595-601. doi: 10.13700/j.bh.1001-5965.2020.0619
ZHAO An'an, HE Daliang, WANG Han, et al. Automatic paving path planning method on complex surfaces[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(4): 595-601. doi: 10.13700/j.bh.1001-5965.2020.0619(in Chinese)
Citation: ZHAO An'an, HE Daliang, WANG Han, et al. Automatic paving path planning method on complex surfaces[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(4): 595-601. doi: 10.13700/j.bh.1001-5965.2020.0619(in Chinese)

复杂曲面上的自动铺放路径规划方法

doi: 10.13700/j.bh.1001-5965.2020.0619
基金项目: 

国家自然科学基金重大研究计划 91948301

浙江省重点研发计划 2020C01039

详细信息
    通讯作者:

    郭俊刚, E-mail: guojg@avic.com

  • 中图分类号: V261.94;TH164

Automatic paving path planning method on complex surfaces

Funds: 

Major Research Plan of National Natural Science Foundation of China 91948301

Key Research and Development Program of Zhejiang Province 2020C01039

More Information
  • 摘要:

    自动铺丝是一种先进的复合材料自动制造技术,广泛应用于制造形面复杂的复合材料构件。大曲率区域丝束的压实质量较差、铺放路径的方向偏差和转弯半径难以同时满足等问题,导致了各种铺放缺陷。研究了曲面曲率对路径性能的影响,建立了分区域路径规划机制。采用压辊到曲面的距离来表征丝束压实情况,并根据曲面曲率估算可压实丝束的数量。建立了局部方向偏差和转弯半径计算方法,并在路径密化过程中实时评价,在路径性能超出约束时进行分区。考虑了丝束压实、方向偏差及转弯半径对铺放路径的约束,保证了整张曲面的铺放质量和铺放效率。在翼梢小翼曲面上完成了路径规划方法的仿真和实验验证,结果表明:所提方法能够在复杂曲面上获得满足性能要求的铺放路径。

     

  • 图 1  压辊与模具间的几何关系

    Figure 1.  Geometric relationship between pressure roller and mold

    图 2  压辊仿真与平面铺放实验

    Figure 2.  Pressure roller simulation and flat paving experiment

    图 3  初始路径生成方法示意图

    Figure 3.  Schematic diagram of initial path generation method

    图 4  铺放路径局部转弯半径估算方法

    Figure 4.  Estimation method of local turning radius of paving path

    图 5  黄金分割法优化局部铺放方向

    Figure 5.  Optimization of local paving direction using golden section method

    图 6  平行等距密化方法示意图

    Figure 6.  Schematic of parallel isometric densification method

    图 7  翼梢小翼曲面上的可铺放丝束数量分布

    Figure 7.  Distribution of the number of tows that can be paved on winglet surface

    图 8  翼梢小翼曲面上的铺层路径

    Figure 8.  Pavement path on winglet surface

    图 9  铺放路径性能仿真分析结果

    Figure 9.  Simulation analysis results of paving path performance

    图 10  实际铺放实验和铺放结果

    Figure 10.  Actual placement experiment and placement results

    表  1  压辊模型的主要参数

    Table  1.   Main parameters of pressure roller model

    参数 压辊内径/mm 压辊外径/mm 压辊长度/mm 压辊轴弹性模量/MPa 压辊轴泊松比 模具弹性模量/MPa 模具泊松比
    数值 40 85 130 210 000 0.3 210 000 0.3
    下载: 导出CSV

    表  2  方向偏差、转弯半径和压实情况

    Table  2.   Direction deviation, turning radius and compaction

    铺层角度/(°) 方向偏差/(°) 转弯半径/mm 压实距离/mm
    0 9.8 1 557.4 1.2
    45 9.6 1 530.9 1.3
    -45 8.5 1 975.0 0.9
    90 9.7 1 552.6 1.5
    下载: 导出CSV
  • [1] BEAKOU A, CANO M, LE J B, et al. Modelling slit tape buckling during automated prepreg manufacturing: A local approach[J]. Composite Structures, 2011, 93(10): 2628-2635. doi: 10.1016/j.compstruct.2011.04.030
    [2] DEBOUT P, CHANAL H, DUC E. Tool path smoothing of a redundant machine: Application to automated fiber placement[J]. Computer Aided Design, 2011, 43: 122-132. doi: 10.1016/j.cad.2010.09.011
    [3] DIRK H J A L, WARD C, POTTER K D. The engineering aspects of automated prepreg layup: History, present and future[J]. Composites Part B: Engineering, 2012, 43(3): 997-1009. doi: 10.1016/j.compositesb.2011.12.003
    [4] LAND I B. Design and manufacture of advanced composite aircraft structures using automated tow placement[D]. Cambridge: Massachusetts Institute of Technology, 1996.
    [5] WANG X, ZHANG W, ZHANG L. Intersection of a ruled surface with a free-form surface[J]. Numerical Algorithms, 2007, 46(1): 85-100. doi: 10.1007/s11075-007-9118-y
    [6] HAN Z, FU Q, FAN Y, et al. A path planning algorithm of closed surface for fiber placement[C]//Proceedings of the 1st International Conference on Mechanical Engineering and Material Science. Paris: Atlantis Press, 2012: 475-479.
    [7] PEI J, WANG X, PEI J, et al. Path planning based on ply orientation information for automatic fiber placement on mesh surface[J]. Applied Composite Materials, 2018, 25(6): 1477-1490. doi: 10.1007/s10443-018-9678-0
    [8] BLOM A W, SETOODEH S, HOL J M A M, et al. Design of variable-stiffness conical shells for maximum fundamental eigenfrequency[J]. Computers & Structures, 2008, 86(9): 870-878.
    [9] BLOM A W, TATTING B F, HOL J M A M, et al. Fiber path definitions for elastically tailored conical shells[J]. Composites Part B: Engineering, 2009, 40(1): 77-84. doi: 10.1016/j.compositesb.2008.03.011
    [10] GURDAL Z, TATTING B F, WU C K. Variable stiffness composite panels: Effects of stiffness variation on the in-plane and buckling response[J]. Composites Part A: Applied Science and Manufacturing, 2008, 39(5): 911-922. doi: 10.1016/j.compositesa.2007.11.015
    [11] HYER M W, CHARETTE R F. Use of curvilinear fiber format in composite structure design[J]. AIAA Journal, 1991, 29(6): 1011-1015. doi: 10.2514/3.10697
    [12] ROUSSEAU G, WEHBE R, HALBRITTER J, et al. Automated fiber placement path planning: A state-of-the-art review[J]. Computer-Aided Design & Applications, 2019, 16(2): 172-203.
    [13] SCHUELER K, MILLER J, HALE R. Approximate geometric methods in application to the modeling of fiber placed composite structures[J]. Journal of Computing and Information Science in Engineering, 2004, 4(3): 251-256. doi: 10.1115/1.1736685
    [14] SHIRINZADEH B, CASSIDY G, OETOMO D, et al. Trajectory generation for open-contoured structures in robotic fibre placement[J]. Robotics and Computer-Integrated Manufacturing, 2007, 23(4): 380-394.
    [15] LOPES C S, GURDAL Z, CAMANHO P P. Variable-stiffness composite panels: Buckling and first-ply failure improvements over straight-fibre laminates[J]. Computers & Structures, 2008, 86(9): 897-907.
    [16] 王伟, 邓涛, 赵树高. 橡胶Mooney-Rivlin模型中材料常数的确定[J]. 特种橡胶制品, 2004(4): 8-10. https://www.cnki.com.cn/Article/CJFDTOTAL-TZXJ200404003.htm

    WANG W, DENG T, ZHAO S G. Determination for material constants of rubber Mooney-Rivlin model[J]. Special Purpose Rubber Products, 2004(4): 8-10(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TZXJ200404003.htm
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  401
  • HTML全文浏览量:  45
  • PDF下载量:  288
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-06
  • 录用日期:  2021-03-19
  • 网络出版日期:  2022-04-20

目录

    /

    返回文章
    返回
    常见问答