[1] 陈文娴. 基于深度学习的小样本异常用电数据检测技术研究[D].武汉:华中科技大学,2018.CHEN W X.Abnormal electricity utilization detection based on deep learning and few-shot learning[D].Wuhan:Huazhong University of Science and Technology,2018(in Chinese). [2] 商曦文,张颖,吉莹,等.智能电表运行状态评估技术研究[J].自动化与仪器仪表,2018,11(3):139-146.SHANG X W,ZHANG Y,JI Y,et.al.Research on smart meters' running state assessment techniques[J].Automation & Instrumentation,2018,11(3):139-146(in Chinese). [3] CAI H,CHEN H Q,YE X Q,et al.An on-line state evaluation method of smart meters based on information fusion[J].IEEE Access,2019,1(7):163665-163676. [4] LI Y F,WU H,PANG S,et al.Application of supervised machine learning algorithms in diagnosis of abnormal voltage[J].Electrical Measurement and Instrumentation,2016,53(1):58-62. [5] 叶剑斌,朱东升,汪翊节,等.智能电能表状态检验技术研究[J].自动化仪表,2020,41(1):55-59.YE J B,ZHU D S,WANG Y J,et al.Research on intelligent electric energy meter state inspection technology[J].Process Aotumation Instrumentation,2020,41(1):55-59(in Chinese). [6] 祝宇楠,徐晴,刘建,等.数据挖掘在智能电能表故障分析中的应用[J].电力工程技术,2016,35(5):19-23.ZHU Y N,XU Q,LIU J,et al.Application of data mining in fault analysis of intelligent electricity meters[J].Power Engineering Technology,2016,35(5):19-23(in Chinese). [7] 韩笑.基于不确定性信息融合的智能电能表状态评价方法研究[D].长春:吉林大学,2018:22-58.HAN X.Research on state evaluation method of smart electricity meter based on uncertainty information fusion[D].Changchun:Jilin University,2018:22-58(in Chinese). [8] CHENG Y Y,HOU X Z,XIAO J.Design and realization of condition management system of gateway electrical[J].Electrical Measurement and Instrumentation,2013,50(8):87-92. [9] SHEN X,ZHAO D N,CAO M.Research on energy metering device remote online monitoring and analysis platform based on internet of thing[J].Electrical Measurement and Instrumentation,2015,52(1):35-40. [10] 王新刚,吴颖,张垠.基于数据挖掘的智能电能表在线监测方法[J].电测与仪表,2016,53(13):65-69.WANG X G,WU Y,ZHANG Y.Online monitoring method of intelligent electricity meters based on data mining[J].Electric Measurement and Instrumentation,2016,53(13):65-69(in Chinese). [11] LONG M S,WANG J,DING G,et al.Transfer feature learning with joint distribution adaptation[C]//2013 IEEE International Conference on Computer Vision.Piscataway:IEEE Press,2013:1-8. [12] CHAWLA N V,BOWYER K W,HALL L O,et al.SMOTE:Synthetic minority over-sampling technique[J].Journal of Artificial Intelligence Research,2011,16(1):321-357. [13] BORGWARDT K M, GRETTON A,RASCH M J,et al.Integrating structured biological data by kernel maximum mean discrepancy[J].Bioinformatics,2006,22(14):49-57. [14] FILISBINO T A,GIRALDI G A,THOMAZ C E.Support vector machine ensembles for discriminant analysis for ranking principal components[J].Multimedia Tools and Applications,2020,79(5):1-37. [15] PAN S J,TSANG I W,KWOK J T,et al.Domain adaptation via transfer component analysis[J].IEEE Transactions on Neural Networks,2011,22(2):199-210. [16] GRETTON A,BORGWARDT K M,RASCH M J,et al.A kernel method for the two-sample problem[J].Neural Information Processing Systems,2006,4(3):1-10. [17] FAN J,KE Z T,LIU H,et al.QUADRO:A supervised dimension reduction method via Rayleigh quotient optimization[J].Annals of Statistics,2015,4(43):1498-1534. [18] 龙明盛.迁移学习问题与方法研究[D].北京:清华大学,2014.LONG M S.Research on transfer learning problems and methods[D].Beijing:Tsinghua University,2014(in Chinese). |