留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于CE-PF算法的舰载机离场调度优化问题

万兵 韩维 苏析超 刘洁

万兵, 韩维, 苏析超, 等 . 基于CE-PF算法的舰载机离场调度优化问题[J]. 北京航空航天大学学报, 2022, 48(5): 771-785. doi: 10.13700/j.bh.1001-5965.2020.0674
引用本文: 万兵, 韩维, 苏析超, 等 . 基于CE-PF算法的舰载机离场调度优化问题[J]. 北京航空航天大学学报, 2022, 48(5): 771-785. doi: 10.13700/j.bh.1001-5965.2020.0674
WAN Bing, HAN Wei, SU Xichao, et al. Carrier-based aircraft departure scheduling optimization based on CE-PF algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(5): 771-785. doi: 10.13700/j.bh.1001-5965.2020.0674(in Chinese)
Citation: WAN Bing, HAN Wei, SU Xichao, et al. Carrier-based aircraft departure scheduling optimization based on CE-PF algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(5): 771-785. doi: 10.13700/j.bh.1001-5965.2020.0674(in Chinese)

基于CE-PF算法的舰载机离场调度优化问题

doi: 10.13700/j.bh.1001-5965.2020.0674
基金项目: 

国家自然科学基金 61903374

航空科学基金 2016ZA01008

详细信息
    通讯作者:

    苏析超, E-mail: suxich@126.com

  • 中图分类号: V221+.3; TB553

Carrier-based aircraft departure scheduling optimization based on CE-PF algorithm

Funds: 

National Natural Science Foundation of China 61903374

Aeronautical Science Foundation of China 2016ZA01008

More Information
  • 摘要:

    甲板作业调度研究是提升航母战斗力的关键技术,而其具有时间、空间与资源受限的复杂约束调度问题已被证实为NP-hard。根据舰载机出动离场调度优化问题的特点,将其抽象为零缓存区混合流水车间调度模型,建立包含飞机避碰等约束的混合整数规划模型。提出一种交叉熵与作业剖面匹配(CE-PF)算法用于问题求解,并给出了算法流程架构。交叉熵算法通过高斯采样完成启发式规则下的工件分组,作业剖面匹配算法完成分组工件的任务排序、作业编排及约束检查等调度设计,Gap逼近算法进行目标值评估、精英种群选择、抽样参数更新及收敛判定。通过算例仿真,验证了CE-PF算法求解离场调度优化问题的有效性;灵敏度分析表明起飞模式和空间约束对出动效能影响较大。

     

  • 图 1  舰载机出动作业流程

    Figure 1.  Flowchart of departure and operation of carrier-based aircraft

    图 2  作业剖面示意图

    Figure 2.  Sketch map of operation profile

    图 3  基于CE-PF算法求解离场调度的结构流程

    Figure 3.  Flowchart for solving departure scheduling based on CE-PF algorithm

    图 4  某型航母甲板概况

    Figure 4.  Overview of aircraft carrier deck

    图 5  8架飞机出动调度甘特图

    Figure 5.  Gantt chart of departure scheduling of 8 aircraft

    图 6  8架飞机的滑行路径

    Figure 6.  Taxiing trajectory of 8 aircraft

    图 7  12架飞机出动调度甘特图

    Figure 7.  Gantt chart of departure scheduling of 12 aircraft

    图 8  16架飞机出动调度甘特图

    Figure 8.  Gantt chart of departure scheduling of 16 aircraft

    图 9  50次仿真优化计算结果的散布值

    Figure 9.  Scatter of 50 simulation optimization results

    图 10  允许滑行交叠作业下不同出动规模的调度甘特图

    Figure 10.  Gantt chart of scheduling with different departure scales under taxiing overlap operation

    图 11  出动16架飞机时各起飞位调度甘特图

    Figure 11.  Gantt chart of take-off position scheduling for 16 aircraft

    图 12  弹射模式下16架飞机出动甘特图

    Figure 12.  Gantt chart of 16 aircraft in ejection mode

    表  1  仿真实验中出动飞机情况

    Table  1.   Departure aircraft in simulation

    停机位 飞机编号
    8架出动 12架出动 16架出动
    A0
    A1
    A2 1 1
    A3 1 2
    A4 2 3
    A5 2 3 4
    A6 4 5
    A7 3 6
    A8 5 7
    A9 4 6 8
    A10 5 7 9
    A11 10
    A12 6 8 11
    A13 12
    B1 7 9 13
    B2 10 14
    B3 8 11 15
    B4 12 16
    下载: 导出CSV

    表  2  空间约束变化对离场调度方案的影响

    Table  2.   Impact of spatial constraint changes on departure scheduling scheme

    阻塞式(本文) 无阻塞情况 滑行作业交叠情况
    出动规模/架 最优值/s 最优值/s Gap值/s gap相对值 最优值/s 减少量/s 提升率
    8 372 349 23 0.07 320 52 0.14
    12 538 481 57 0.12 429 109 0.20
    16 691 622 69 0.11 537 154 0.22
    下载: 导出CSV

    表  3  不同出动规模下调度算法性能比较

    Table  3.   Performance comparison of scheduling algorithms under different departure scales

    算法 出动规模/架 平均算法时间/s 出动完成时间/s
    Best Avg. Worst Std.
    8 0.93 372 374.6 378 1.729
    CE-PF 12 1.14 538 540.15 542 1.089
    16 1.28 691 695.9 701 3.28
    8 10.38 376 382.75 390 4.18
    DL-GA 12 12.63 545 557.6 559 6.17
    16 16.82 695 714.4 736 14.6
    8 3.84 372 385.9 396 7.37
    DE-CE 12 5.95 546 557.5 576 9.63
    16 8.28 697 716.8 730 9.68
    下载: 导出CSV
  • [1] 屈也频, 金惠明, 何肇雄. 航母舰载机装备体系及指标论证方法[J]. 航空学报, 2018, 39(5): 108-119. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201805010.htm

    QU Y P, JIN H M, HE Z X. Carrier-based aircraft equipment system-of-systems and index demonstration method[J]. Acta Aeronuatica et Astronautica Sinica, 2018, 39(5): 108-119(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201805010.htm
    [2] 谢君, 廖松, 石章松. 航母作战部署中的舰载机出动规划模型[J]. 系统工程与电子技术, 2020, 42(1): 128-132. https://www.cnki.com.cn/Article/CJFDTOTAL-XTYD202001017.htm

    XIE J, LIAO S, SHI Z S. Programming model of flight sortie for an aircraft carrier in transit[J]. Systems Engineering and Electronics, 2020, 42(1): 128-132(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XTYD202001017.htm
    [3] 姜龙光. 国外航母航空保障系统[M]. 北京: 国防工业出版社, 2016: 1-35.

    JIANG L G. Foreign aircraft carrier aviation support system[M]. Beijing: National Defense Industry Press, 2016: 1-35(in Chinese).
    [4] WANG X W, LIU J, SU X C, et al. A review on carrier aircraft dispatch path planning and control on deck[J]. Chinese Journal of Aeronautics, 2020, 33(12): 3039-3057. doi: 10.1016/j.cja.2020.06.020
    [5] RYAN J C, CUMMINGS M L, ROY N, et al. Designing an interactive local and global decision support system for aircraft carrier deck scheduling: AIAA-2011-1516[R]. Reston: AIAA, 2011.
    [6] MICHINI B, HOW J P. A human-interactive course of action planner for aircraft carrier deck operations[C]//Proceedings of AIAA Information Technology. Reston: AIAA, 2011: 1515.
    [7] DASTIDAR R G, FRAZZOLI E. A queueing network based approach to distributed aircraft carrier deck scheduling[C]//Proceedings of AIAA Information Technology. Reston: AIAA, 2011: 1514.
    [8] RYAN J C. Evaluating safety protocols for manned unmanned environments through agent based simulation[D]. Cambridge: Massachusetts Institute of Technology, 2014: 35-65.
    [9] QI C, WANG D. Dynamic aircraft carrier flight deck task planning based on HTN[J]. IFAC-PapersOnLine, 2016, 49(12): 1608-1613. doi: 10.1016/j.ifacol.2016.07.810
    [10] 郑茂, 黄胜, 王超. 优先网络排队的舰载机出动回收能力研究[J]. 北京理工大学学报, 2013, 33(10): 1051-1055. doi: 10.3969/j.issn.1001-0645.2013.10.011

    ZHENG M, HUANG S, WANG C. Research on aircraft sortie generation rate with the use of HOL closed queueing network model[J]. Transactions of Beijing Institute of Technology, 2013, 33(10): 1051-1055(in Chinese). doi: 10.3969/j.issn.1001-0645.2013.10.011
    [11] 司维超, 韩维, 史玮韦. 基于PSO算法的舰载机舰面布放调度方法研究[J]. 航空学报, 2012, 33(11): 2048-2056. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201211013.htm

    SI W C, HAN W, SHI W W. Research on deck-disposed scheduling method of carrier planes based on PSO algorithm[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(11): 2048-2056(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201211013.htm
    [12] 苏析超, 韩维, 萧卫, 等. 基于Memetic算法的舰载机舰面一站式保障调度[J]. 系统工程与电子技术, 2016, 38(10): 2303-2309. doi: 10.3969/j.issn.1001-506X.2016.10.12

    SU X C, HAN W, XIAO W, et al. Pit-stop support scheduling on deck of carrier plane based on Memetic algorithm[J]. Systems Engineering and Electronics, 2016, 38(10): 2303-2309(in Chinese). doi: 10.3969/j.issn.1001-506X.2016.10.12
    [13] 杨放青, 王超, 姜滨, 等. 舰载机出动回收调度策略生成方法[J]. 北京理工大学学报, 2018, 38(10): 1030-1036. https://www.cnki.com.cn/Article/CJFDTOTAL-BJLG201810007.htm

    YANG F Q, WANG C, JIANG B, el al. A method of policy automated generation for carrier aircraft sortie and recovery scheduling[J]. Transactions of Beijing Institute of Technology, 2018, 38(10): 1030-1036(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-BJLG201810007.htm
    [14] ZHANG J F, ZHAO P, ZHANG Y, et al. Criteria selection and multi-objective optimization of aircraft landing problem[J]. Journal of Air Transport Management, 2020, 82: 101734. doi: 10.1016/j.jairtraman.2019.101734
    [15] 苏析超, 韩维, 张勇, 等. 考虑人机匹配模式的舰载机甲板机务勤务保障调度方法[J]. 航空学报, 2018, 39(12): 222314. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201812020.htm

    SU X C, HAN W, ZHANG Y, et al. Scheduling method for maintenance and service support of carrier-based aircraft on flight deck with different man-aircraft matching patterns[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(12): 222314(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201812020.htm
    [16] SU X C, HAN W, WU Y, et al. A proactive robust scheduling method for aircraft carrier flight deck operations with stochastic durations[J]. Complexity, 2018, 2018: 6932985.
    [17] LIU J, HAN W, ZHANG Y, et al. Design of an online nonlinear optimal tracking control method for unmanned ground systems[J]. IEEE Access, 2018, 6: 33251-33260. doi: 10.1109/ACCESS.2018.2846769
    [18] JIANG T, SU X, HAN W. Optimization of support scheduling on deck of carrier aircraft based on improved differential evolution algorithm[C]//Proceedings of the 3rd IEEE International Conference on Control Science and Systems Engineering. Piscataway: IEEE Press, 2017: 136-140.
    [19] ASHIS G B, NICHOLAS R. Efficiently solving repeated integer linear programming problems by learning solutions of similar linear programming problems using boosting trees: MIT-CSAIL-TR-2015-001[R]. Cambridge: Massachusetts Institute of Technology, 2015: 12-35.
    [20] 刘翱, 刘克. 舰载机保障作业调度问题研究进展[J]. 系统工程理论与实践, 2017, 37(1): 49-60. https://www.cnki.com.cn/Article/CJFDTOTAL-XTLL201701004.htm

    LIU A, LIU K. Advances in carrier-based aircraft deck operation scheduling[J]. Systems Engineering-Theory and Practice, 2017, 37(1): 49-60(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XTLL201701004.htm
    [21] PINEDO M L. Scheduling theory, algorithms, and systems[M]. 5th ed. Berlin: Springer, 2016: 150-165.
    [22] CABO M, POSSANI E. Considerations on applying cross entropy methods to the vehicle routing problem[J]. International Journal of Combinatorial Optimization Problems and Informatics, 2015, 6(3): 22-33.
    [23] 王桂荣, 李歧强, 丁然, 等. 加工时间不确定的炼钢连铸生产调度串级交叉熵算法[J]. 控制与决策, 2016, 31(7): 1153-1160. https://www.cnki.com.cn/Article/CJFDTOTAL-KZYC201607001.htm

    WANG G R, LI Q Q, DING R, et al. Cascade cross entropy algorithm for steelmaking-continuous casting production scheduling with uncertain processing time[J]. Control and Decision, 2016, 31(7): 1153-1160(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-KZYC201607001.htm
    [24] 张智, 林圣琳, 朱齐丹, 等. 考虑运动学约束的不规则目标遗传避碰规划算法[J]. 航空学报, 2015, 36(4): 1348-1358. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201504035.htm

    ZHANG Z, LIN S L, ZHU Q D, et al. Genetic collision avoidance planning algorithm for irregular shaped object with kinematics constraint[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(4): 1348-1358(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201504035.htm
  • 加载中
图(12) / 表(3)
计量
  • 文章访问数:  430
  • HTML全文浏览量:  200
  • PDF下载量:  47
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-02
  • 录用日期:  2021-03-12
  • 网络出版日期:  2022-05-20

目录

    /

    返回文章
    返回
    常见问答