留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

导弹增量式自适应容错控制系统设计

方艺忠 陆宇婷 韩拓 胡庆雷

方艺忠, 陆宇婷, 韩拓, 等 . 导弹增量式自适应容错控制系统设计[J]. 北京航空航天大学学报, 2022, 48(5): 920-928. doi: 10.13700/j.bh.1001-5965.2021.0454
引用本文: 方艺忠, 陆宇婷, 韩拓, 等 . 导弹增量式自适应容错控制系统设计[J]. 北京航空航天大学学报, 2022, 48(5): 920-928. doi: 10.13700/j.bh.1001-5965.2021.0454
FANG Yizhong, LU Yuting, HAN Tuo, et al. Design of missile incremental adaptive fault tolerant control system[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(5): 920-928. doi: 10.13700/j.bh.1001-5965.2021.0454(in Chinese)
Citation: FANG Yizhong, LU Yuting, HAN Tuo, et al. Design of missile incremental adaptive fault tolerant control system[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(5): 920-928. doi: 10.13700/j.bh.1001-5965.2021.0454(in Chinese)

导弹增量式自适应容错控制系统设计

doi: 10.13700/j.bh.1001-5965.2021.0454
基金项目: 

国家自然科学基金 61960206011

北京市自然科学基金 JQ19017

浙江省自然科学基金 LD22E050004

详细信息
    通讯作者:

    胡庆雷, E-mail: huql_buaa@buaa.edu.cn

  • 中图分类号: V249.1

Design of missile incremental adaptive fault tolerant control system

Funds: 

National Natural Science Foundation of China 61960206011

Beijing Municipal Natural Science Foundation JQ19017

Zhejiang Provincial Natural Science Foundation LD22E050004

More Information
  • 摘要:

    导弹在实际飞行中存在气动参数不确定、执行机构故障等问题,从而对导弹飞行控制系统稳定性与操控能力造成严重影响。为此,设计一种增量式自适应容错控制方法,在实现导弹安全控制的同时,兼顾姿态控制算法时效性与可靠性。建立面向控制的三通道耦合姿态动力学模型;考虑系统不确定性和执行机构故障,基于增量式动态逆方法设计导弹被动容错控制律;基于自适应滑模控制与增量式动态逆方法,设计增量式动态逆自适应容错控制律,并对系统残差进行分析比较;通过某典型全弹道姿态跟踪任务,验证舵面故障下的姿态跟踪特性。仿真结果表明:所提方法在故障未知的情况下,能够保证飞行控制系统的鲁棒性与容错能力,实现导弹的安全可靠控制。

     

  • 图 1  无故障时仿真情况

    Figure 1.  Simulation results without faults

    图 2  偏差+失效+卡死故障时仿真情况

    Figure 2.  Simulation results with deviation, loss of efficiency and stuck faults

  • [1] 陈翔, 董立勇, 于宁宇. 美军导弹防御拦截武器发展趋势分析[J]. 军事文摘, 2020(23): 44. https://www.cnki.com.cn/Article/CJFDTOTAL-JSWN202023014.htm

    CHEN X, DONG L Y, YU N Y. Analysis on the development trend of US missile defense interception weapons[J]. Military Digest, 2020(23): 44(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JSWN202023014.htm
    [2] ZHANG Y M, JIANG J. Bibliographical review on reconfigurable fault-tolerant control systems[J]. Annual Reviews in Control, 2008, 32(2): 229-252. doi: 10.1016/j.arcontrol.2008.03.008
    [3] JIANG J, YU X. Fault-tolerant control systems: A comparative study between active and passive approaches[J]. Annual Reviews in Control, 2012, 36(1): 60-72. doi: 10.1016/j.arcontrol.2012.03.005
    [4] ABBASPOUR A, MOKHTARI S, SARGOLZAEI A, et al. A survey on active fault-tolerant control systems[J]. Electronics, 2020, 9(9): 1-24.
    [5] ALWI H, EDWARDS C, STROOSMA O, et al. Fault tolerant sliding mode control design with piloted simulator evaluatio[J]. Journal of Guidance, Control, and Dynamics, 2008, 31(5): 1186-1201. doi: 10.2514/1.35066
    [6] ALWI H, EDWARDS C, STROOSMA O, et al. Sliding mode propulsion control tests on a motion flight simulator[C]//AIAA Guidance, Navigation, and Control Conference. Reston: AIAA, 2009: 1-23.
    [7] 张福桢, 金磊. 使用SGCMGs航天器滑模姿态容错控制[J]. 北京航空航天大学学报, 2017, 43(4): 806-813. doi: 10.13700/j.bh.1001-5965.2016.0270

    ZHANG F Z, JIN L. Sliding-mode fault-tolerant attitude control for spacecraft using SGCMGs[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(4): 806-813(in Chinese). doi: 10.13700/j.bh.1001-5965.2016.0270
    [8] 马艳如, 王青, 胡昌华, 等. 执行器故障下的运载火箭非奇异终端滑模容错控制[J]. 宇航学报, 2020, 41(12): 1553-1560. doi: 10.3873/j.issn.1000-1328.2020.12.009

    MA Y R, WANG Q, HU C H, et al. Non-singular terminal sliding mode fault-tolerant control of launch vehicle with actuator fault[J]. Journal of Astronautics, 2020, 41(12): 1553-1560(in Chinese). doi: 10.3873/j.issn.1000-1328.2020.12.009
    [9] MODIRI A, MOBAYEN S. Adaptive terminal sliding mode control scheme for synchronization of fractional-order uncertain chaotic systems[J]. ISA Transactions, 2020, 105: 33-50. doi: 10.1016/j.isatra.2020.05.039
    [10] ZEGHLACHE S, KARA K, SAIGAA D. Fault tolerant control based on interval type-2 fuzzy sliding mode controller for coaxial trirotor aircraft[J]. ISA Transactions, 2015, 59: 215-231. doi: 10.1016/j.isatra.2015.09.006
    [11] 叶荣冠, 郑飞杰. 基于二型模糊大脑情感学习控制器的双足机器人容错控制研究[J]. 延边大学学报(自然科学版), 2021, 47(1): 56-63. doi: 10.3969/j.issn.1004-4353.2021.01.010

    YE R G, ZHENG F J. A study of fault-tolerant control for a biped robot by using a type-2 fuzzy brain emotional learning controller[J]. Journal of Yanbian University(Natural Science), 2021, 47(1): 56-63(in Chinese). doi: 10.3969/j.issn.1004-4353.2021.01.010
    [12] 王蕊, 孔国利. 传感器故障的四旋翼无人机模糊自适应容错控制[J]. 数学的实践与认识, 2020, 50(24): 116-124. https://www.cnki.com.cn/Article/CJFDTOTAL-SSJS202024012.htm

    WANG R, KONG G L. Fuzzy adaptive fault-tolerant control for four-rotor unmanned aerial vehicle under sensor fault[J]. Mathematics in Practice and Theory, 2020, 50(24): 116-124(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-SSJS202024012.htm
    [13] 孙浩, 郭迎清, 赵万里. 航空发动机传感器与执行机构信息重构算法[J]. 北京航空航天大学学报, 2020, 46(2): 331-339. doi: 10.13700/j.bh.1001-5965.2019.0240

    SUN H, GUO Y Q, ZHAO W L. Information reconstruction algorithm of aero-engine sensors and actuators[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(2): 331-339(in Chinese). doi: 10.13700/j.bh.1001-5965.2019.0240
    [14] 张振良, 刘君强, 黄亮, 等. 基于半监督迁移学习的轴承故障诊断方法[J]. 北京航空航天大学学报, 2019, 45(11): 2291-2300. doi: 10.13700/j.bh.1001-5965.2019.0082

    ZHANG Z L, LIU J Q, HUANG L, et al. A bearing fault diagnosis method based on semi-supervised and transfer learning[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(11): 2291-2300(in Chinese). doi: 10.13700/j.bh.1001-5965.2019.0082
    [15] 王进花, 曹洁, 李伟, 等. 强噪声环境下自适应CRPF故障诊断方法[J]. 北京航空航天大学学报, 2018, 44(5): 923-930. doi: 10.13700/j.bh.1001-5965.2017.0353

    WANG J H, CAO J, LI W, et al. An adaptive CRPF fault diagnosis method under strong noise condition[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(5): 923-930(in Chinese). doi: 10.13700/j.bh.1001-5965.2017.0353
    [16] 车畅畅, 王华伟, 倪晓梅, 等. 基于深度学习的航空发动机故障融合诊断[J]. 北京航空航天大学学报, 2018, 44(3): 621-628. doi: 10.13700/j.bh.1001-5965.2017.0197

    CHE C C, WANG H W, NI X M, et al. Fault fusion diagnosis of aero-engine based on deep learning[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(3): 621-628(in Chinese). doi: 10.13700/j.bh.1001-5965.2017.0197
    [17] 王良禹, 徐浩军, 李颖晖, 等. 结冰条件下的飞行控制律重构设计方法[J]. 北京航空航天大学学报, 2019, 45(3): 606-613. doi: 10.13700/j.bh.1001-5965.2018.0358

    WANG L Y, XU H J, LI Y H, et al. Reconfigurable design method of flight control law under icing conditions[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(3): 606-613(in Chinese). doi: 10.13700/j.bh.1001-5965.2018.0358
    [18] GRONDMAN F, LOOYE G, KUCHAR R O, et al. Design and flight testing of incremental nonlinear dynamic inversion-based control laws for a passenger aircraft[C]//AIAA Guidance, Navigation, and Control Conference. Reston: AIAA, 2018: 1-25.
    [19] SMEUR E J J, CHU Q P, CROON G C H E D. Adaptive incremental nonlinear dynamic inversion for attitude control of micro air vehicles[J]. Journal of Guidance, Control, and Dynamics, 2016, 39(3): 450-461. doi: 10.2514/1.G001490
    [20] SUN S, WANG X, CHU Q P, et al. Incremental nonlinear fault-tolerant control of a quadrotor with complete loss of two opposing rotors[J]. IEEE Transactions on Robotics, 2021, 37(1): 116-130. doi: 10.1109/TRO.2020.3010626
    [21] WANG X R, KAMPEN E J, CHU Q P. Quadrotor fault-tolerant incremental nonsingular terminal sliding mode control[J]. Aerospace Science and Technology, 2019, 95: 1-14.
    [22] WANG X, KAMPEN E J, CHU Q P, et al. Incremental sliding-mode fault-tolerant flight control[J]. Journal of Guidance, Control, and Dynamics, 2019, 42(2): 244-258. doi: 10.2514/1.G003497
    [23] 李新国, 方群. 有翼导弹飞行动力学[M]. 西安: 西北工业大学出版社, 2004: 28-42.

    LI X G, FANG Q. Flight dynamics of winged missile[M]. Xi'an: Northwestern Polytechnical University Press, 2004: 28-42(in Chinese).
    [24] LU P, VAN KAMPEN E J, DE VISSER C, et al. Aircraft fault-tolerant trajectory control using incremental nonlinear dynamic inversion[J]. Control Engineering Practice, 2016, 57: 126-141. doi: 10.1016/j.conengprac.2016.09.010
  • 加载中
图(2)
计量
  • 文章访问数:  790
  • HTML全文浏览量:  234
  • PDF下载量:  54
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-11
  • 录用日期:  2021-10-29
  • 网络出版日期:  2022-05-20

目录

    /

    返回文章
    返回
    常见问答