[an error occurred while processing this directive]
   
 
���¿��ټ��� �߼�����
   ��ҳ  �ڿ�����  ��ί��  Ͷ��ָ��  �ڿ�����  ��������  �� �� ��  ��ϵ����
�������պ����ѧѧ�� 2005, Vol. 31 Issue (11) :1232-1236    DOI:
���� ����Ŀ¼ | ����Ŀ¼ | ������� | �߼����� << | >>
������ͷ����ֵIJ��ж�Ŀ���Ŵ��㷨
���¡1, ����1, ������2, ����2*
1. �������պ����ѧ �Զ�����ѧ���������ѧԺ, ���� 100083;
2. ������������,���� 100854
Parallel multi-objective genetic algorithm by adding area penalty
Li Changlong1, Cheng Peng1, Chen Xiaobo2, Chai Xudong2*
1. School of Automation Science and Electrical Engineering, Beijing University of Aeronautics and Astronautics, Beijing 100083, China;
2. Beijing Simulation Center, Beijing 100854, China

ժҪ
�����
�������
Download: PDF (494KB)   HTML 1KB   Export: BibTeX or EndNote (RIS)      Supporting Info
ժҪ �����ѧ������Ż�����Ķ�Ŀ���Ŵ��㷨ͨ�������Ŵ����������ս,�����һ�����͵IJ��л��㷨�������Ч��.ȫ�ָ�����ȵķֲ��ڸ�������,���ȴ����еĽ����л�ȡȫ�ַ�Χ��Pareto���Ž⼫ֵ,�����͸�ÿ������,������Щ��ֵ��������������Լ��ijͷ�����.ͨ���ͷ��������������Լ�������ָ������̵���������,ͬʱ��ȡ�Ż���ʩ��֤ÿ�����̼�������������������û���ص�����©,����ÿ������ֻ���������ض���һ��Pareto���Ž�,�����˼�����;ͬʱ���ڽ��̼佻����������С,��֤��Ч�ʵ����.ͨ���봮���㷨(NSGA2)�������IJ��л��㷨�Ƚ�,��ʾ�˸��㷨����Ч�Ժ��Ƚ���.
Service
�ѱ����Ƽ�������
�����ҵ����
�������ù�����
Email Alert
RSS
�����������
�ؼ����� �Ŵ��㷨   �����㷨   ��Ŀ���Ż�   ��ѧ���Ż�     
Abstract�� One challenge for multi-objective genetic algorithm (MOGA) is the computational cost when MOGAs were used in the multidisciplinary optimization (MDO) problems. To improve the efficiency of MOGA, a new parallel algorithm was suggested. All the individuals were distributed among processors equally, and each processor got the extremum of Pareto solutions from all processors and constructed its own penalty function. Then each processor could divide its own Pareto solutions convergence area by the penalty function. To avoid the appearance of overlapping and omitting area and reduce the convergence time, some optimization techniques were suggested. So each processor could converge to its own special Pareto solutions segment. Because the individuals computed was divided into every processor equally, in each processor the computational cost was reduced. This with the small data changed in each processor guaranteed the efficiency. Through comparing with serial MOGA (NSGA2) and the other parallel MOGA (guided domination approach), the algorithm is proved being more effective and advanced.
Keywords�� genetic algorithm   parallel algorithm   multi-objective optimization   multidisciplinary optimization     
Received 2004-09-06;
Fund:

�����Ƽ��ص�ʵ�����������Ŀ(51474040204HT0802)

About author: ���¡(1979-),��,�Ĵ�¡����,˶ʿ��, lclbuaa@163.com.
���ñ���:   
���¡, ����, ������, ����.������ͷ����ֵIJ��ж�Ŀ���Ŵ��㷨[J]  �������պ����ѧѧ��, 2005,V31(11): 1232-1236
Li Changlong, Cheng Peng, Chen Xiaobo, Chai Xudong.Parallel multi-objective genetic algorithm by adding area penalty[J]  JOURNAL OF BEIJING UNIVERSITY OF AERONAUTICS AND A, 2005,V31(11): 1232-1236
���ӱ���:  
http://bhxb.buaa.edu.cn//CN/     ��     http://bhxb.buaa.edu.cn//CN/Y2005/V31/I11/1232
Copyright 2010 by �������պ����ѧѧ��