北京航空航天大学学报 ›› 2005, Vol. 31 ›› Issue (11): 1232-1236.

• 论文 • 上一篇    下一篇

按区域惩罚划分的并行多目标遗传算法

李昌隆1, 程鹏1, 陈晓波2, 柴旭东2   

  1. 1. 北京航空航天大学 自动化科学与电气工程学院, 北京 100083;
    2. 北京仿真中心,北京 100854
  • 收稿日期:2004-09-06 出版日期:2005-11-30 发布日期:2010-09-20
  • 作者简介:李昌隆(1979-),男,四川隆昌人,硕士生, lclbuaa@163.com.
  • 基金资助:

    国防科技重点实验基金资助项目(51474040204HT0802)

Parallel multi-objective genetic algorithm by adding area penalty

Li Changlong1, Cheng Peng1, Chen Xiaobo2, Chai Xudong2   

  1. 1. School of Automation Science and Electrical Engineering, Beijing University of Aeronautics and Astronautics, Beijing 100083, China;
    2. Beijing Simulation Center, Beijing 100854, China
  • Received:2004-09-06 Online:2005-11-30 Published:2010-09-20

摘要: 解决多学科设计优化问题的多目标遗传算法通常面临着大计算量的挑战,提出了一种新型的并行化算法来提高其效率.全局个体均匀的分布在各个进程,首先从所有的进程中获取全局范围的Pareto最优解极值,并发送给每个进程,再由这些极值来构造各个进程自己的惩罚函数.通过惩罚函数给个体添加约束来划分各个进程的收敛区域,同时采取优化措施保证每个进程加速收敛并且收敛区域没有重叠和遗漏,这样每个进程只需收敛到特定的一段Pareto最优解,降低了计算量;同时由于进程间交换的数据量小,保证了效率的提高.通过与串行算法(NSGA2)和其他的并行化算法比较,显示了该算法的有效性和先进性.

Abstract: One challenge for multi-objective genetic algorithm (MOGA) is the computational cost when MOGAs were used in the multidisciplinary optimization (MDO) problems. To improve the efficiency of MOGA, a new parallel algorithm was suggested. All the individuals were distributed among processors equally, and each processor got the extremum of Pareto solutions from all processors and constructed its own penalty function. Then each processor could divide its own Pareto solutions convergence area by the penalty function. To avoid the appearance of overlapping and omitting area and reduce the convergence time, some optimization techniques were suggested. So each processor could converge to its own special Pareto solutions segment. Because the individuals computed was divided into every processor equally, in each processor the computational cost was reduced. This with the small data changed in each processor guaranteed the efficiency. Through comparing with serial MOGA (NSGA2) and the other parallel MOGA (guided domination approach), the algorithm is proved being more effective and advanced.

中图分类号: 


版权所有 © 《北京航空航天大学学报》编辑部
通讯地址:北京市海淀区学院路37号 北京航空航天大学学报编辑部 邮编:100191 E-mail:jbuaa@buaa.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发