[an error occurred while processing this directive]
   
 
���¿��ټ��� �߼�����
   ��ҳ  �ڿ�����  ��ί��  Ͷ��ָ��  �ڿ�����  ��������  �� �� ��  ��ϵ����
�������պ����ѧѧ�� 2005, Vol. 31 Issue (11) :1237-1240    DOI:
���� ����Ŀ¼ | ����Ŀ¼ | ������� | �߼����� << | >>
һ�ַ�����ϵͳ��Ա��ʶ�㷨
��ΰ, ���ȷ�*
�������պ����ѧ �Զ�����ѧ���������ѧԺ, ���� 100083
Set membership identification algorithm of nonlinear systems
Chai Wei, Sun Xianfang*
School of Automation Science and Electrical Engineering, Beijing University of Aeronautics and Astronautics, Beijing 100083, China

ժҪ
�����
�������
Download: PDF (346KB)   HTML 1KB   Export: BibTeX or EndNote (RIS)      Supporting Info
ժҪ ��Դ���δ֪�н������ķ����Զ�̬ϵͳ��³����ʶ����,�����һ���µķ����Զ�̬ϵͳ�ļ�Ա��ʶ�㷨.���þ��������������ıƽ�����,����ϵͳ�������������,ѡ�þ���������������δ֪������ϵͳ��ģ.�������������������ı�ȷ��֮��,���ǵ���ģ�����ϵͳ�����н�,���þ��������������Ϊ��������ģ�͵��ص�,ʹ�ò������Լ�Ա��ʶ�㷨��ʶ�������������������Ȩֵ.���ڼ�Ա��ʶ�㷨���õ������������Ȩֵ�ļ��Ϲ���,��ϵͳ���й�����,���Ժܷ������������ģ��Ԥ��ʵ��ϵͳ�������Χ.�������,��Ա��ʶ�㷨��ʶ��������Ȩֵ����С���˷����ٵ���δ֪��̬ϵͳ�����ֲ���Ӱ��.
Service
�ѱ����Ƽ�������
�����ҵ����
�������ù�����
Email Alert
RSS
�����������
�ؼ����� ������ϵͳ   �������������   ³����   ��ʶ   ��Ա     
Abstract�� A new set membership identification algorithm was proposed for the robust identification problem of nonlinear dynamic systems with unknown but bounded noises. Radial basis function (RBF) networks were used to approximate unknown nonlinear dynamic systems utilizing their approximation ability according to input and output data of systems. The weights of the RBF network of the unknown nonlinear dynamic system were estimated using a linear-in-parameter set membership identification algorithm considering that the RBF network was a linear-in-parameter model and the modeling errors and system noises were bounded after the centers of the RBF network were determined. Since the result of the estimation was a set of the weights of the RBF network, it could be easily used to predict the interval of the practical system output. Simulation shows that the set membership algorithm is less affected by the distribution of the noises of the unknown nonlinear dynamic system than the least squares algorithm.
Keywords�� nonlinear systems   radial basis function networks   robustness   identification   set membership     
Received 2004-07-12;
Fund:

������Ȼ��ѧ����������Ŀ(69904001,60234010); ��������Ȼ��ѧ����������Ŀ(4032014)

About author: �� ΰ(1981-),��,������,��ʿ��, chaiwei81@163.com.
���ñ���:   
��ΰ, ���ȷ�.һ�ַ�����ϵͳ��Ա��ʶ�㷨[J]  �������պ����ѧѧ��, 2005,V31(11): 1237-1240
Chai Wei, Sun Xianfang.Set membership identification algorithm of nonlinear systems[J]  JOURNAL OF BEIJING UNIVERSITY OF AERONAUTICS AND A, 2005,V31(11): 1237-1240
���ӱ���:  
http://bhxb.buaa.edu.cn//CN/     ��     http://bhxb.buaa.edu.cn//CN/Y2005/V31/I11/1237
Copyright 2010 by �������պ����ѧѧ��