[an error occurred while processing this directive]
���¿��ټ��� �߼�����
   ��ҳ  �ڿ�����  ��ί��  Ͷ��ָ��  �ڿ�����  ��������  �� �� ��  ��ϵ����
�������պ����ѧѧ�� 2005, Vol. 31 Issue (09) :1045-1048    DOI:
���� ����Ŀ¼ | ����Ŀ¼ | ������� | �߼����� << | >>
���Ҳ�, ����, ��ռ��*
�������պ����ѧ �Զ�����ѧ���������ѧԺ, ���� 100083
Simulating turntable control system with neural network
Pei Zhongcai, Yin Li, Wang Zhanlin*
School of Automation Science and Electrical Engineering, Beijing University of Aeronautics and Astronautics, Beijing 100083, China

Download: PDF (408KB)   HTML 1KB   Export: BibTeX or EndNote (RIS)      Supporting Info
ժҪ ��ת̨����ƫ�ء�Ħ���Ȳ�ȷ�����ظ��ŵ������,����������PID(Proportional-Integral-Differential)�������ϵķ���,�������Ӧ���ر仯��ת̨����ϵͳ.�����˻���BP(Back Propagation)�����������ӦPID�������Ļ���ԭ��,������ת̨λ�ÿ���ϵͳ����ѧģ��,���Կ���ϵͳ���з��������ʵ����֤,ͨ���봫ͳPID���ƵĶԱ�ʵ����������:�����ϵͳ��������ѧϰ����,�ܶ�̬����PID����,ʹϵͳ���ֳ����õĿ����������͸�������,֤���������ϵͳ����Ч��.���㷨�ṹ��,PID��ʼ������������,������ת̨ʵʱ����ϵͳ��Ӧ��.
Email Alert
�ؼ����� ������   ���߱�ʶ   ��ѧϰ   ����ӦPID     
Abstract�� To solve the turntable uncertain partial load and friction disturbance, a turntable control system was designed with neural-proportion-integral-differential (PID) theory. Because of the learning capacity of neural network, the control system showed adaptive capacity to the load disturbance. The basic theory of a self-adaptive PID controller based on back propagation (BP) neural network was described, The mathematic model of the turntable position control system was set up. A thorough analysis on the system was given by simulation and experiments. The simulation and experiment results prove that the turntable with neural-PID controller shows good track performance and capacity against the load disturbance, but the traditional PID controller hasn’t. The neural-PID system can regulate the PID parameters dynamically by self-learning to fit for the load changes and makethe PID parameters regulation become easier. The controller has a simple structure and can be easily realized in engineering. The results show the effectiveness of the control algorithm.
Keywords�� neural networks   on-line process identification   self-learning   self-adaptive PID     
Received 2004-03-04;
About author: ���Ҳ�(1968-),��,ɽ��������,������, peizc@buaa.edu.cn.
���Ҳ�, ����, ��ռ��.����������ķ���ת̨����ϵͳ[J]  �������պ����ѧѧ��, 2005,V31(09): 1045-1048
Pei Zhongcai, Yin Li, Wang Zhanlin.Simulating turntable control system with neural network[J]  JOURNAL OF BEIJING UNIVERSITY OF AERONAUTICS AND A, 2005,V31(09): 1045-1048
http://bhxb.buaa.edu.cn//CN/     ��     http://bhxb.buaa.edu.cn//CN/Y2005/V31/I09/1045
Copyright 2010 by �������պ����ѧѧ��