[an error occurred while processing this directive]
   
 
���¿��ټ��� �߼�����
   ��ҳ  �ڿ�����  ��ί��  Ͷ��ָ��  �ڿ�����  ��������  �� �� ��  ��ϵ����
�������պ����ѧѧ�� 2005, Vol. 31 Issue (06) :595-598    DOI:
���� ����Ŀ¼ | ����Ŀ¼ | ������� | �߼����� << | >>
TSKģ�������缰��Լ���Ż�ѧϰ�㷨
�촺÷, ������, ����*
�������պ����ѧ �Զ�����ѧ���������ѧԺ, ���� 100083
TSK-DRFNN and its constrained optimization algorithm
Xu Chunmei, Er Lianjie, Hu Hongjie*
School of Automation Science and Electrical Engineering, Beijing University of Aeronautics and Astronautics, Beijing 100083, China

ժҪ
�����
�������
Download: PDF (114KB)   HTML 1KB   Export: BibTeX or EndNote (RIS)      Supporting Info
ժҪ ��Է����Զ�̬ϵͳ�ص�,�����һ�ֻ���TSK(Takagi-Sugeno-Kang)ģ��ģ�͵Ķ�̬�ع�ģ��������DRFNN(Dynamic Recurrent Fuzzy Neural Network),��ģ���������ɾ�̬����Ͷ�̬�������������,���о�̬��������ʵ�ֹ�����������ֺͽ�ģ�����ֵļ���,��FIR��̬�˲���ʵ�ֵ��ڷ����ع���������ʵ�ֹ���Ľ��۲���,Ϊ�˼ӿ����������ٶ�,�����˻���Լ���Ż��㷨��������������㷨,������ṹ�Ż��Ͳ���ѧϰ��Ϊһ��Լ���Ż����������.Ӧ���ڷ�����ϵͳ�ı�ʶ�Ϳ��Ʒ�������˵����DRFNN���缰���㷨�Խ��������ϵͳ�������Ч��.
Service
�ѱ����Ƽ�������
�����ҵ����
�������ù�����
Email Alert
RSS
�����������
�ؼ����� ������ϵͳ   ����   Լ��   �Ż�   ģ��������     
Abstract�� A novel DFNN(dynamic fuzzy neural networks )based on TSK(Takagi-Sugeno-Kang) fuzzy model was presented to the nonlinear dynamic system. The DFNN was constitutive of static networks and dynamic networks. The static networks realized premise and defuzification part. The recurrent dynamic networks realized by FIR filter was used for realizing consequence part. Beside this a new algorithm, constrained optimization method-FUNCOM(fuzzy neural constrained optimization method)was suggested for reducing the convergence time of networks parameter. The network training task was formulated as a constrained optimization problem. The proposed dynamic model equipped with the learning algorithm was applied in a nonlinear dynamic system. Comparisons with other FNN(fuzzy neural network) and DFNN (dynamic fuzzy neural network)were given and discussed, indicating the effectiveness of the DRFNN(dynamic recurrent fuzzy neural network) and the algorithm.
Keywords�� nonlinear systems   control   constraint   optimization   fuzzy-neural networks     
Received 2004-01-12;
About author: �촺÷(1973-),Ů,ɽ��������,��ʿ��, xuchunmei1030@sohu.com.
���ñ���:   
�촺÷, ������, ����.TSKģ�������缰��Լ���Ż�ѧϰ�㷨[J]  �������պ����ѧѧ��, 2005,V31(06): 595-598
Xu Chunmei, Er Lianjie, Hu Hongjie.TSK-DRFNN and its constrained optimization algorithm[J]  JOURNAL OF BEIJING UNIVERSITY OF AERONAUTICS AND A, 2005,V31(06): 595-598
���ӱ���:  
http://bhxb.buaa.edu.cn//CN/     ��     http://bhxb.buaa.edu.cn//CN/Y2005/V31/I06/595
Copyright 2010 by �������պ����ѧѧ��