北京航空航天大学学报 ›› 2005, Vol. 31 ›› Issue (06): 595-598.

• 论文 •    下一篇

TSK模糊神经网络及其约束优化学习算法

徐春梅, 尔联洁, 扈宏杰   

  1. 北京航空航天大学 自动化科学与电气工程学院, 北京 100083
  • 收稿日期:2004-01-12 出版日期:2005-06-30 发布日期:2010-09-21
  • 作者简介:徐春梅(1973-),女,山东昌乐人,博士生, xuchunmei1030@sohu.com.

TSK-DRFNN and its constrained optimization algorithm

Xu Chunmei, Er Lianjie, Hu Hongjie   

  1. School of Automation Science and Electrical Engineering, Beijing University of Aeronautics and Astronautics, Beijing 100083, China
  • Received:2004-01-12 Online:2005-06-30 Published:2010-09-21

摘要: 针对非线性动态系统特点,提出了一种基于TSK(Takagi-Sugeno-Kang)模糊模型的动态回归模糊神经网络DRFNN(Dynamic Recurrent Fuzzy Neural Network),该模糊神经网络由静态网络和动态网络两部分组成,其中静态网络用来实现规则的条件部分和解模糊部分的计算,由FIR动态滤波器实现的内反馈回归网络用来实现规则的结论部分,为了加快网络收敛速度,给出了基于约束优化算法的网络参数迭代算法,把网络结构优化和参数学习作为一个约束优化问题来解决.应用于非线性系统的辨识和控制仿真试验说明了DRFNN网络及其算法对解决非线性系统问题的有效性.

Abstract: A novel DFNN(dynamic fuzzy neural networks )based on TSK(Takagi-Sugeno-Kang) fuzzy model was presented to the nonlinear dynamic system. The DFNN was constitutive of static networks and dynamic networks. The static networks realized premise and defuzification part. The recurrent dynamic networks realized by FIR filter was used for realizing consequence part. Beside this a new algorithm, constrained optimization method-FUNCOM(fuzzy neural constrained optimization method)was suggested for reducing the convergence time of networks parameter. The network training task was formulated as a constrained optimization problem. The proposed dynamic model equipped with the learning algorithm was applied in a nonlinear dynamic system. Comparisons with other FNN(fuzzy neural network) and DFNN (dynamic fuzzy neural network)were given and discussed, indicating the effectiveness of the DRFNN(dynamic recurrent fuzzy neural network) and the algorithm.

中图分类号: 


版权所有 © 《北京航空航天大学学报》编辑部
通讯地址:北京市海淀区学院路37号 北京航空航天大学学报编辑部 邮编:100191 E-mail:jbuaa@buaa.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发