北京航空航天大学学报 ›› 2002, Vol. 28 ›› Issue (5): 536-539.

• 论文 • 上一篇    下一篇

证据理论和神经网络结合的目标识别方法

王毛路, 李少洪, 毛士艺   

  1. 北京航空航天大学 电子工程系
  • 收稿日期:2001-01-10 出版日期:2002-05-31 发布日期:2010-09-25
  • 作者简介:王毛路(1974-),女,河南许昌人,博士生,100083,北京.

Target Recognition Method by Combination of Neural Networks with Evidence Theory

WANG Mao-lu, LI Shao-hong, MAO Shi-yi   

  1. Beijing University of Aeronautics and Astronautics, Dept. of Electronic Engineering
  • Received:2001-01-10 Online:2002-05-31 Published:2010-09-25

摘要: 提出用证据理论和神经网络结合的高分辨率雷达(HRR)目标识别方法,即首先把多个目标高分辨一维距离像送入学习矢量量化神经网络,进行目标类证据估计;然后用D-S证据理论对各次估计结果进行融合.提出了连续特征空间离散化及类支持度构造的方法,并分析了神经网络识别的误差原因.仿真实验结果表明,这种方法的输出正确识别率比仅仅使用矢量量化神经网络有较大的改善,抗噪能力也有所提高.

Abstract: A method based on the combination of neural networks with D-S evidence theory was proposed to recognize HRR targets. Multiple HRR images were input into Learning Vector Qualification (LVQ) neural network to estimate target type evidence, the results were fused by D-S evidence theory. Methods for feature space discretization and class evidence estimation were proposed. The origin of recognition error of neural network was analyzed. The results of emulation show that the correctness of this method is higher than that of LVQ network method obviously, the ability to counteract disturbance and noise is also raised.

中图分类号: 


版权所有 © 《北京航空航天大学学报》编辑部
通讯地址:北京市海淀区学院路37号 北京航空航天大学学报编辑部 邮编:100191 E-mail:jbuaa@buaa.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发