北京航空航天大学学报 ›› 2000, Vol. 26 ›› Issue (4): 432-434.

• 论文 • 上一篇    下一篇

离散数学中与量词有关的推理规则

何自强   

  1. 北京航空航天大学 计算机科学与工程系
  • 收稿日期:1998-12-11 发布日期:2010-11-19
  • 作者简介:何自强(1943-),男,北京人,副教授,100083,北京.

Rules of Inference for Quantifiers in Discrete Mathematics

HE Zi-qiang   

  1. Beijing University of Aeronautics and Astronautics,Dept. of Computer Science and Engineering
  • Received:1998-12-11 Published:2010-11-19

摘要: 清楚地叙述了自然推理系统中的存在量词消去规则和全称量词引入规则满足的条件,而这些条件在许多离散数学教科书中叙述得相当含糊.与某些教科书中存在量词消去规则只能用于无自由变元的公式不同,按照本文给出的条件,存在量词消去规则也可以用于有自由变元的公式,因而增强了系统的推理能力.引进了解释之间和赋值之间关于公式集的等价性,从而证明了系统是可靠的,即一个证明中的结论是其前提的逻辑推论.

Abstract: The conditions satisfied for the existential instantiation and the universal generalization in the natural deduction system are described clear, whereas they are described rather vaguely in many textbooks on discrete mathematics. Contrasting with that the existential instantiation in some textbooks is used only for formulas without free variables, according to the condition we given, it may be also used for formulas with free variables and the ability to reason has increased. Introducing the equivalence between interpretations and the equivalence between assignments with respect to a set of formulas, it is proved that the system is sound, that is, in a proof, the conclusion is a logical consequence of the premises.

中图分类号: 


版权所有 © 《北京航空航天大学学报》编辑部
通讯地址:北京市海淀区学院路37号 北京航空航天大学学报编辑部 邮编:100191 E-mail:jbuaa@buaa.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发