北京航空航天大学学报 ›› 2000, Vol. 26 ›› Issue (4): 473-476.

• 论文 • 上一篇    下一篇

偏最小二乘回归模型内涵分析方法研究

王惠文1, 刘强2, 屠永平1   

  1. 1. 北京航空航天大学 管理学院;
    2. 北京航空航天大学 机械工程及自动化学院
  • 收稿日期:1999-03-23 发布日期:2010-11-19
  • 作者简介:王惠文,(1957-),女,河北玉田人,教授,100083,北京.
  • 基金资助:

    国家自然科学基金资助项目(79570002)

Identification of Optimal Subspace from PLS Regression

WANG Hui-ping1, LIU Qiang2, TU Yong-ping1   

  1. 1. Beijing University of Aeronautics and Astronautics,School of Management;
    2. Beijing University of Aeronautics and Astronautics,School of Mechanical Engineering and Automation
  • Received:1999-03-23 Published:2010-11-19

摘要: 偏最小二乘回归是一种新型的多元分析方法.它可以在自变量多重相关的条件下,有效地构造出对系统解释性最强的子空间,进行回归建模,使模型的精度和可靠性得到很大的提高.本文提出采用因素分析方法,对偏最小二乘回归的最优子空间进行正交变换.这种变换方法对偏最小二乘回归的模型结果没有任何影响,却可以使最优子空间的实际含义得到更好的解释.案例研究表明,经过正交变换后,原始变量被分为若干变量组,每个变量组分别对应于最优子空间中的一个因素,从而提高了对最优子空间的内涵分析能力.

Abstract: Partial least-squares regression, a novel approach for multivariate analysis, is widely used for modeling a multi-collinear variable data set, with improved model accuracy and reliability based on building a subspace with most explanatory ability to the data set. In this paper the factor analysis method is presented to transform orthogonally the optimal subspace, which is obtained from partial least-squares regression. The transformation can identify each factor in a meaningful way but does not change the results of partial least-squares regression model. Therefore, the physical meaning of the optimal subspace of partial least-squares regression can be illustrated. A case study demonstrates that the original variable set is divided into several variable groups after the orthogonal transform, each of which is corresponding to a new factor in the subspace such that its explanatory ability is improved.

中图分类号: 


版权所有 © 《北京航空航天大学学报》编辑部
通讯地址:北京市海淀区学院路37号 北京航空航天大学学报编辑部 邮编:100191 E-mail:jbuaa@buaa.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发