[an error occurred while processing this directive]
   
 
���¿��ټ��� �߼�����
   ��ҳ  �ڿ�����  ��ί��  Ͷ��ָ��  �ڿ�����  ��������  �� �� ��  ��ϵ����
�������պ����ѧѧ�� 2010, Vol. 36 Issue (10) :1180-1183    DOI:
���� ����Ŀ¼ | ����Ŀ¼ | ������� | �߼����� << | >>
�Ľ������㷨�ں����Ż��е�Ӧ��
��ѧ��, �O��, ��һ��*
�������պ����ѧ ��е���̼��Զ���ѧԺ, ���� 100191
Improved immune algorithm and applications on function optimization
Sun Xuegang, Yun Chao, Cui Yihui*
School of Mechanical Engineering and Automation, Beijing University of Aeronautics and Astronautics, Beijing 100191, China

ժҪ
�����
�������
Download: PDF (480KB)   HTML 1KB   Export: BibTeX or EndNote (RIS)      Supporting Info
ժҪ �ڶ����п�¡ѡ���㷨�Ŀ�����Ϊ���������Ļ�����,�����һ���µ�ƫ�Ķ�̬���߿�¡�㷨(EDICA,Eccentric Dynamic Immune Clone Algorithm).���ý����������Ӵ�����ȸ���������������Ž����������Ϣ,���ƫ�ı������,ʹ�������ؿ������Ž���.�����������,ͨ����̬�������������뾶�ķ���,�ڽ������ڼӴ󲽳��Լӿ������ٶ�,���ں��ڼ�С��������������Ż�����.���ó���������������Կ˷��������ԵIJ���Ӱ�첢���ȫ����������.ʵ��������:EDICA�����ܹ�׼ȷ���ҵ���̬�����Ķ�����ŵ�,���һ����Խϸߵľ��������͸��ٶ�̬���������ŵ�.
Service
�ѱ����Ƽ�������
�����ҵ����
�������ù�����
Email Alert
RSS
�����������
��ѧ��
�O��
��һ��
�ؼ����� ��¡ѡ���㷨   ƫ�ı���   ��̬�뾶����   �����Ż�     
Abstract�� A novel eccentric dynamic immune clone algorithm (EDICA) was proposed based on the analysis of antibody behavior features in existed clone selection algorithm (CSA). Heuristic information implicates that descendant antibodies are always better than their parents during evolution, which derive an eccentric mutation strategy, and let the mutation center shift a proper distance along the direction which is from parent to descendant, antibodies may search towards optima more quickly. A dynamic mutation radial adjustment method was proposed with some introduced control factors. The search speed was accelerated by enlarged mutation radial at initial stage. Then the search granularity was gradually diminished so as to improve optimization precision at later stage. A hyper sphere chaos mutation strategy was adopted to avoid the adverse effects of anisotropy and ensure the ability to successfully find global optima. Experiment results show that the EDICA could not only accurately discover most optima of static function but also hit and follow optima of dynamic function with high precision.
Keywords�� clone selection algorithm   eccentric mutation   dynamic radial mutation   function optimization     
Received 2009-08-13; published 2010-11-12
About author: ��ѧ��(1972-),��,������ɽ��,��ʿ��,sunjohn@126.com.
���ñ���:   
��ѧ��, �O��, ��һ��.�Ľ������㷨�ں����Ż��е�Ӧ��[J]  �������պ����ѧѧ��, 2010,V36(10): 1180-1183
Sun Xuegang, Yun Chao, Cui Yihui.Improved immune algorithm and applications on function optimization[J]  JOURNAL OF BEIJING UNIVERSITY OF AERONAUTICS AND A, 2010,V36(10): 1180-1183
���ӱ���:  
http://bhxb.buaa.edu.cn//CN/     ��     http://bhxb.buaa.edu.cn//CN/Y2010/V36/I10/1180
Copyright 2010 by �������պ����ѧѧ��