北京航空航天大学学报 ›› 2011, Vol. 37 ›› Issue (1): 76-80.

• 论文 • 上一篇    下一篇

散乱点云自适应滤波算法

孙殿柱1, 朱昌志2, 范志先1, 李延瑞1   

  1. 1. 山东理工大学 机械工程学院, 淄博 255091;
    2. 北京市三一重机股份有限公司 钻杆研究院, 北京102206
  • 收稿日期:2009-11-26 出版日期:2011-01-31 发布日期:2011-01-28
  • 作者简介:孙殿柱(1956-),男,山东烟台人,教授,zhuchzhi@126.com.
  • 基金资助:

    国家高技术研究发展计划资助项目(2006AA04Z105)

Self-adaptive filtering algorithm for scattered points

Sun Dianzhu1, Zhu Changzhi2, Fan Zhixian1, Li Yanrui1   

  1. 1. School of Mechanical Engineering, Shandong University of Technology, Zibo 255091, China;
    2. The Department of Kelly Bar, Beijing SANY Heavy Machinery CO.,LTD, Beijing 102206, China
  • Received:2009-11-26 Online:2011-01-31 Published:2011-01-28

摘要: 提出一种散乱点云自适应滤波算法,该算法采用改进的R*-树组织散乱点云的拓扑近邻关系,基于该结构快速准确获取局部型面参考数据,自适应调节二维高斯分布的数字特征计算滤波权值,计算局部型面参考数据对原始型面数据的影响因子,以此作为权值计算各点滤波后的坐标,采用加权平均方法实现散乱点云的自适应滤波.实验证明该算法可有效提高点云的滤波效率,在保留原始型面特征的基础上,减小点云的随机误差,提高光顺性.

Abstract: A self-adaptive filtering algorithm for scattered points was proposed. The node splitting algorithm and the clustering algorithm of R*-tree were improved and the spacial index structure of triangular mesh model was established based on the improved R*-tree; The local surface reference data was obtained according to data nodes- distributing of the spacial index structure; The filtering weight was computed by self-adjusting figure feature of 2-D Gauss distributing according to its local surface reference data; The weight value of local surface reference data to originality surface data was computed, and the coordinate of scattered points was computed according to this weight value; The self-adaptive filtering for scattered points was realized with the method of weighted mean. It proved that this algorithm can improve the efficiency of filtering and reduce the random error of the scattered points on the basis of the accurate reservation of surface characteristic.

中图分类号: 


版权所有 © 《北京航空航天大学学报》编辑部
通讯地址:北京市海淀区学院路37号 北京航空航天大学学报编辑部 邮编:100191 E-mail:jbuaa@buaa.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发