[an error occurred while processing this directive]
   
 
���¿��ټ��� �߼�����
   ��ҳ  �ڿ�����  ��ί��  Ͷ��ָ��  �ڿ�����  ��������  �� �� ��  ��ϵ����
�������պ����ѧѧ�� 2011, Vol. 37 Issue (3) :283-288    DOI:
���� ����Ŀ¼ | ����Ŀ¼ | ������� | �߼����� << | >>
����Ⱥ�Ż���ֱ��������ƽ������е�Ӧ��
����÷1, ���1, ŷ��ƽ��2, ����Ƽ3*
1. �������պ����ѧ �ɿ�����ϵͳ����ѧԺ, ���� 100191;
2. �й��ռ似���о�Ժ ���岿 ����100186;
3. �������պ����ѧ �Զ�����ѧ���������ѧԺ, ���� 100191
Helicopter rotor tuning based on neural network and particle swarm optimization
Liu Hongmei1, Lü Chen1, Ouyang Pingchao2, Wang Shaoping3*
1. School of Reliability and Systems Engineering, Beijing University of Aeronautics and Astronautics, Beijing 100191, China;
2. China Academy of Space Technology System Department, Beijing 100186, China;
3. School of Automation Science and Electrical Engineering, Beijing University of Aeronautics and Astronautics, Beijing 100191, China

ժҪ
�����
�������
Download: PDF (1KB)   HTML 1KB   Export: BibTeX or EndNote (RIS)      Supporting Info
ժҪ ��ͳ��ֱ���������������û�п��ǵ������������ź�֮��ķ����Թ�ϵ,�����һȱ��,���������ع�������(GRNN,General Regression Neural Network)������Ⱥ�㷨���ϵ������������,����GRNN���罨������ƽ�����ģ��,�Խ�Ҷ�ĵ���������Ϊ�����������,������ת��ͻ��������ļ��ٶȲ���ֵ��Ϊ�������,��������������ֱ�������źż��ģ��.��ֱ��������ΪĿ�꺯��,��������Ⱥ�Ż��㷨�Խ�Ҷ�ĵ�����������Ѱ��,��õ�ֱ��������Сʱ�Ľ�Ҷ�ĵ�����. ����ʵ��������,�˷�����ͨ�����в��Ի�õ������ݶ���������и���,ʹϵͳ��ʹ�ù����в�������,�����ڽ��ٵķ��е������������Ķ�ƽ�����.
Service
�ѱ����Ƽ�������
�����ҵ����
�������ù�����
Email Alert
RSS
�����������
�ؼ����� ����   ��ƽ�����   GRNN������   ����Ⱥ�Ż��㷨   ֱ����     
Abstract�� Considering the drawbacks of traditional rotor adjustment method without calculating possible nonlinear between rotor adjustments and fuselage vibration signals of the helicopter, a new rotor adjustment method based on the general regression neural network (GRNN) and the particle swarm optimization (PSO) was presented. GRNN network was employed to model the relationship of the rotor adjustment parameters and the fuselage vibrations, whose input parameters are rotor adjustment parameters and whose outputs are acceleration measurements along the three axes of rotor shaft and the fuselage. With the helicopter vibration as an objective function, the PSO was used to make a global optimization to find the suitable rotor adjustments corresponding to the minimum vibrations. Flight test results indicate that the neural networks are easily updated if new data becomes available thus allowing the system to evolve and mature in the course of its use.
Keywords�� rotor   dynamic balance   general regression neural network (GRNN)   particle swarm optimization   helicopter     
Received 2010-01-11;
Fund:

������Ȼ��ѧ����������Ŀ(61074083,50705005); �����Ƽ���ҵ��������������Ŀ(Z132010B004)

About author: ����÷(1978-),Ů,����������,��ʦ,liuhongmei@buaa.edu.cn.
���ñ���:   
����÷, ���, ŷ��ƽ��, ����Ƽ.����Ⱥ�Ż���ֱ��������ƽ������е�Ӧ��[J]  �������պ����ѧѧ��, 2011,V37(3): 283-288
Liu Hongmei, L�� Chen, Ouyang Pingchao, Wang Shaoping.Helicopter rotor tuning based on neural network and particle swarm optimization[J]  JOURNAL OF BEIJING UNIVERSITY OF AERONAUTICS AND A, 2011,V37(3): 283-288
���ӱ���:  
http://bhxb.buaa.edu.cn//CN/     ��     http://bhxb.buaa.edu.cn//CN/Y2011/V37/I3/283
Copyright 2010 by �������պ����ѧѧ��