北京航空航天大学学报 ›› 2011, Vol. 37 ›› Issue (9): 1115-1121.

• 论文 • 上一篇    下一篇

基于动态RCS的无人机航迹实时规划

晏青, 熊峻江, 游思明   

  1. 北京航空航天大学 航空科学与工程学院, 北京 100191
  • 收稿日期:2010-04-27 出版日期:2011-09-30 发布日期:2011-10-03
  • 作者简介:晏 青(1986-),男, 江西南昌人, 硕士生, yanqbad2008@126.com.
  • 基金资助:

    航空科学基金资助项目(05A51011)

Real-time programming method for flight path of unmanned vehicle based on dynamic RCS

Yan Qing, Xiong Junjiang, You Siming   

  1. School of Aeronautic Science and Engineering, Beijing University of Aeronautics and Astronautics, Beijing 100191, China
  • Received:2010-04-27 Online:2011-09-30 Published:2011-10-03

摘要: 传统的无人机航迹规划主要采用仅考虑无人机与雷达距离的简化雷达威胁模型,未充分考虑无人机雷达散射截面RCS(Radar Cross-Section)随自身姿态角改变而产生的动态变化.据此,提出了无人机周向动态RCS模型,并建立了综合考虑无人机动态RCS与雷达距离的探测概率模型,利用遗传算法进行了基于动态RCS的航迹实时规划,计算结果与传统航迹规划结果进行了对比.仿真结果表明该模型的可行性和有效性,能充分利用无人机自身的优势规避威胁,满足无人机的航迹实时规划的要求.

Abstract: Simplified radar detection models are applied in conventional flight path programming of unmanned vehicle, in which only the distance between unmanned vehicle and radar has been taken into account, but the dynamic variation of radar cross-section (RCS) with attitude angle of unmanned vehicle has not been considered. New dynamic RCS model was presented to characterize the RCS distribution nature of unmanned vehicle, radar-s detection probability model was developed to involve dynamic RCS and the distance between radar and unmanned vehicle. From genetic algorithm (GA) and dynamic RCS, real-time programming for flight path of unmanned vehicle was conducted and compared with conventional models. From verification examples, it is demonstrated that the models presented are feasible and valid to avoid the detection of radar.

中图分类号: 


版权所有 © 《北京航空航天大学学报》编辑部
通讯地址:北京市海淀区学院路37号 北京航空航天大学学报编辑部 邮编:100191 E-mail:jbuaa@buaa.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发