[an error occurred while processing this directive]
   
 
���¿��ټ��� �߼�����
   ��ҳ  �ڿ�����  ��ί��  Ͷ��ָ��  �ڿ�����  ��������  �� �� ��  ��ϵ����
�������պ����ѧѧ�� 2011, Vol. 37 Issue (11) :1410-1414    DOI:
���� ����Ŀ¼ | ����Ŀ¼ | ������� | �߼����� << | >>
����Һѹ��ĥ��״��Ԥ��
��ޱ, ����Ƽ*
�������պ����ѧ �Զ�����ѧ���������ѧԺ, ���� 100191
Wear condition prediction of hydraulic pump
Ge Wei, Wang Shaoping*
School of Automation Science and Electrical Engineering, Beijing University of Aeronautics and Astronautics, Beijing 100191, China

ժҪ
�����
�������
Download: PDF (502KB)   HTML 1KB   Export: BibTeX or EndNote (RIS)      Supporting Info
ժҪ ĥ���Ǻ���Һѹ�õ��͵Ľ����Թ���֮һ,��ĥ�������Բ���,��ĥ��״������׼ȷ��Ԥ��Ƚ�����.�����������,����˻��ڶ�߶����ݵ�֧��������Ԥ�ⷽ��,�÷�����֧������������ʱ������Ԥ��Ļ������ۺ����ݶ�߶ȷֽ⡢��ռ��ع��������,�ܸ���Ч���ھ�ʱ�����е�������ϵ���仯����.���û���������Ϊ��ӳ����Һѹ��ĥ��״���������ź�,����ֽ�Ϊ������������,���ö�߶�֧������������ά��Ϣһ��Ԥ��ͶಽԤ��,�������񷽷���Ԥ��ģ�Ͳ���Ѱ��.�Աȴ�ͳ֧���������㷨������Ԥ�⾫��,�������:��߶�֧��������ģ��Ԥ�⾫�ȸ���,�����г���Ԥ��.
Service
�ѱ����Ƽ�������
�����ҵ����
�������ù�����
Email Alert
RSS
�����������
�ؼ����� ����Һѹ��   ĥ��Ԥ��   ��߶�֧��������   ���ݷֽ�   ��ռ��ع�     
Abstract�� Wear is a typical progressive failure of aero hydraulic pump. It is difficult to measure wear loss. To solve precision wear condition prediction problem, multi-dimensional support vector machine (SVM) prediction method was proposed, based on theoretical basis of SVM applied to time series prediction, multi-dimensional data decomposition and phase space reconstruction. The inner relationship of time series can be mined and reflected more effectively by this method. Oil-return flow was chosen to reflect the wear condition of hydraulic pump and was decomposed into trend data and random data. Multi-dimensional SVM was applied to predict oil-return flow of the aero hydraulic pump one-step ahead and multi-step ahead with grid search optimization method. The results show that multi-dimensional SVM model has higher prediction precision and is very suitable for long-term forecasting compared with the predicted results of traditional SVM.
Keywords�� aero hydraulic pump   wear prediction   multi-dimensional support vector machine   data decomposition   phase space reconstruction     
Received 2010-07-20;
Fund:

����863�ƻ�������Ŀ(2009AA04Z412); ���մ��»���������Ŀ(08D51010); 111�ƻ�������Ŀ

About author: �� ޱ(1985-),Ů,�ӱ�ʯ��ׯ��,˶ʿ��,gewei.buaa@gmail.com.
���ñ���:   
��ޱ, ����Ƽ.����Һѹ��ĥ��״��Ԥ��[J]  �������պ����ѧѧ��, 2011,V37(11): 1410-1414
Ge Wei, Wang Shaoping.Wear condition prediction of hydraulic pump[J]  JOURNAL OF BEIJING UNIVERSITY OF AERONAUTICS AND A, 2011,V37(11): 1410-1414
���ӱ���:  
http://bhxb.buaa.edu.cn//CN/     ��     http://bhxb.buaa.edu.cn//CN/Y2011/V37/I11/1410
Copyright 2010 by �������պ����ѧѧ��