北京航空航天大学学报 ›› 2011, Vol. 37 ›› Issue (11): 1410-1414.

• 论文 • 上一篇    下一篇

航空液压泵磨损状况预测

葛薇, 王少萍   

  1. 北京航空航天大学 自动化科学与电气工程学院, 北京 100191
  • 收稿日期:2010-07-20 出版日期:2011-11-30 发布日期:2011-12-03
  • 作者简介:葛 薇(1985-),女,河北石家庄人,硕士生,gewei.buaa@gmail.com.
  • 基金资助:

    国家863计划资助项目(2009AA04Z412); 航空创新基金资助项目(08D51010); 111计划资助项目

Wear condition prediction of hydraulic pump

Ge Wei, Wang Shaoping   

  1. School of Automation Science and Electrical Engineering, Beijing University of Aeronautics and Astronautics, Beijing 100191, China
  • Received:2010-07-20 Online:2011-11-30 Published:2011-12-03

摘要: 磨损是航空液压泵典型的渐进性故障之一,因磨损量难以测量,对磨损状况进行准确的预测比较困难.针对上述问题,提出了基于多尺度数据的支持向量机预测方法,该方法将支持向量机用于时间序列预测的基本理论和数据多尺度分解、相空间重构方法结合,能更有效地挖掘时间序列的内在联系及变化规律.采用回油流量作为反映航空液压泵磨损状况的敏感信号,将其分解为趋势项和随机项,采用多尺度支持向量机作等维信息一步预测和多步预测,利用网格方法对预测模型参数寻优.对比传统支持向量机算法分析其预测精度,结果表明:多尺度支持向量机模型预测精度更高,适于中长期预测.

Abstract: Wear is a typical progressive failure of aero hydraulic pump. It is difficult to measure wear loss. To solve precision wear condition prediction problem, multi-dimensional support vector machine (SVM) prediction method was proposed, based on theoretical basis of SVM applied to time series prediction, multi-dimensional data decomposition and phase space reconstruction. The inner relationship of time series can be mined and reflected more effectively by this method. Oil-return flow was chosen to reflect the wear condition of hydraulic pump and was decomposed into trend data and random data. Multi-dimensional SVM was applied to predict oil-return flow of the aero hydraulic pump one-step ahead and multi-step ahead with grid search optimization method. The results show that multi-dimensional SVM model has higher prediction precision and is very suitable for long-term forecasting compared with the predicted results of traditional SVM.

中图分类号: 


版权所有 © 《北京航空航天大学学报》编辑部
通讯地址:北京市海淀区学院路37号 北京航空航天大学学报编辑部 邮编:100191 E-mail:jbuaa@buaa.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发