北京航空航天大学学报 ›› 2012, Vol. 38 ›› Issue (6): 823-828.

• 论文 • 上一篇    下一篇

评分偏差对于推荐质量的影响

胡必云1, 李舟军1, 王君2, 巢文涵3   

  1. 1. 北京航空航天大学, 软件开发环境国家重点实验室,, 北京 100191;
    2. 北京航空航天大学, 计算机学院, 北京 100191;
    3. 北京航空航天大学, 北京市网络技术重点实验室,, 北京 100191
  • 收稿日期:2011-03-18 出版日期:2012-06-30 发布日期:2012-06-30
  • 基金资助:
    国家自然科学基金资助项目(61170189,60973105);软件开发环境国家重点实验室自主研究课题资助项目(SKLSDE-2011ZX-03)

Effect of rating residual on recommendation quality

Hu Biyun1, Li Zhoujun1, Wang Jun2, Chao Wenhan3   

  1. 1. State Key Laboratory of Software Development Environment, Beijing University of Aeronautics and Astronautics, Beijing 100191, China;
    2. School of Computer Science and Technology, Beijing University of Aeronautics and Astronautics, Beijing 100191, China;
    3. Key Laboratory of Network Technology of Beijing, Beijing University of Aeronautics and Astronautics, Beijing 100191, China
  • Received:2011-03-18 Online:2012-06-30 Published:2012-06-30

摘要: 从理论上分析了评分偏差对于推荐质量的影响;基于潜在偏好及已知评分对评分偏差进行度量,其中潜在偏好通过心理测量学模型计算得出;通过设定不同的评分偏差水平,对评分偏差的影响进行了实验验证.理论分析及实验验证表明:评分偏差可导致推荐准确度及覆盖度下降;基于高质量的评分数据,协同过滤算法可为用户作出好的推荐.

Abstract: The effect of the rating residual on recommendation quality was analyzed. The rating residual was measured through user ratings and latent preferences. Latent preferences were computed with psychometric models. With different levels of rating residual, the effect of the rating residual was experimentally evaluated on real world datasets. Theoretical analysis and experimental results show that rating residual has negative effects on recommendation accuracy and coverage. Based on high quality of data, collaborative filtering algorithms can make precise recommendations for users.

中图分类号: 


版权所有 © 《北京航空航天大学学报》编辑部
通讯地址:北京市海淀区学院路37号 北京航空航天大学学报编辑部 邮编:100191 E-mail:jbuaa@buaa.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发