北京航空航天大学学报 ›› 2013, Vol. 39 ›› Issue (5): 697-700,705.

• 论文 • 上一篇    下一篇

基于神经网络的电磁干扰的预测

杨天鹏1, 马齐爽1, 谢清明2   

  1. 1. 北京航空航天大学自动化科学与电气工程学院, 北京 100191;
    2. 中国航天科工集团公司飞航动力装置研究所, 北京 100074
  • 收稿日期:2012-12-10 修回日期:2013-05-07 出版日期:2013-05-31 发布日期:2013-05-22

Prediction of electromagnetic interference based on neural network

Yang Tianpeng1, Ma Qishuang1, Xie Qingming2   

  1. 1. School of Automation Science and Electrical Engineering, Beijing University of Aeronautics and Astronautics, Beijing 100191, China;
    2. China Aerospace Science and Industry Group, Aviation Aerospace Power Device Research Institute, Beijing 100074, China
  • Received:2012-12-10 Revised:2013-05-07 Online:2013-05-31 Published:2013-05-22

摘要: 提出了一种应用神经网络预测电磁干扰的方法.针对遗传算法总体搜索能力较强但容易陷入局部最优,而模拟退火算法具有较强的局部搜索能力,又能避免搜索陷入局部最优解的特点,将模拟退火算法与遗传算法相结合,优化多层前馈(BP, Back Propagation)神经网络,获取最优的权值和阈值,并采用模拟退火的思想确定隐含层神经元的个数,进而建立基于神经网络的电磁干扰预测模型.以双平行导线间的电磁干扰问题为实例,明确干扰要素,建立训练样本和测试样本,对比期望输出和预测输出之间的误差,结果表明该方法可以准确有效地进行电磁干扰预测.

Abstract: A method to predict the electromagnetic interference using neural network was proposed. Genetic algorithm has the strong overall search ability but easy to fall into local optimum, and simulated annealing algorithm has the partial search ability, avoiding the search into local optimal solution. By using the simulated annealing algorithm and genetic algorithm combining, the back propagation (BP) neural network weights and thresholds were optimized, and the number of hidden layer neurons was determined by the simulated annealing ideas. Then, the neural network-based predictive models of electromagnetic interference was established. With the two parallel leads to electromagnetic interference matter as predicted instance, interference factors were identified, and the training and test samples were established. In contrast to the error between the expected output and the predicted output, the results show that the method can accurately predict the electromagnetic interference effectively.

中图分类号: 


版权所有 © 《北京航空航天大学学报》编辑部
通讯地址:北京市海淀区学院路37号 北京航空航天大学学报编辑部 邮编:100191 E-mail:jbuaa@buaa.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发