北京航空航天大学学报 ›› 2013, Vol. 39 ›› Issue (8): 995-998.

• 论文 •    下一篇

基于遗传算法的散乱点云最小包围盒求解

孙殿柱, 史阳, 刘华东, 李延瑞   

  1. 山东理工大学 机械工程学院, 淄博 255091
  • 收稿日期:2012-08-16 修回日期:2013-04-10 出版日期:2013-08-30 发布日期:2013-09-03
  • 基金资助:

    国家自然科学基金资助项目(51075247);山东省自然科学基金资助项目(ZR2010EM008)

Solution of minimum bounding box of scattered points based on genetic algorithm

Sun Dianzhu, Shi Yang, Liu Huadong, Li Yanrui   

  1. School of Mechanical Engineering, Shandong University of Technology, Zibo 255091, China
  • Received:2012-08-16 Revised:2013-04-10 Online:2013-08-30 Published:2013-09-03

摘要: 提出一种将遗传算法和O'Rourke算法相融合的最小包围盒求解算法,以O'Rourke算法中的体积函数作为遗传算法的目标函数,采用遗传算子指导解的搜索方向,通过新种群的迭代生成过程缩小搜索区域与体积误差,种群迭代结束后对最优个体解码获得最小包围盒.实验结果表明,该算法可在满足最小包围盒体积精度的同时显著提高算法的运行效率,能够有效处理各种复杂散乱点云数据的最小包围盒快速求解问题.

Abstract: An algorithm of minimum bounding box combining genetic algorithm with O'Rourke's algorithm was proposed, which regarded the volume function in O'Rourke's algorithm as the objective function and used the evolutionary factors to guide the searching directions. Through the process of the population's iterative generation, this algorithm narrowed the search area and the volume error. When the iterative process was over, the minimum bounding box was obtained by decoding the optimal individuals. The experimental results show that the algorithm can improve algorithmic efficiency and satisfy the volume accuracy simultaneously. The algorithm can deal with sorts of problems related to minimum bounding box fast solving of complex scattered point cloud.

中图分类号: 


版权所有 © 《北京航空航天大学学报》编辑部
通讯地址:北京市海淀区学院路37号 北京航空航天大学学报编辑部 邮编:100191 E-mail:jbuaa@buaa.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发