北京航空航天大学学报 ›› 2014, Vol. 40 ›› Issue (3): 401-406.doi: 10.13700/j.bh.1001-5965.2013.0268

• 论文 • 上一篇    下一篇

多导弹协同攻击编队非线性最优控制器设计

张磊1, 方洋旺1, 刁兴华1, 胡杰2   

  1. 1. 空军工程大学 航空航天工程学院, 西安 710038;
    2. 中国人民解放军 94857部队, 芜湖 241007
  • 收稿日期:2013-05-17 出版日期:2014-03-20 发布日期:2014-03-29

Design of nonlinear optimal controller for multi-missile formation

Zhang Lei1, Fang Yangwang1, Diao Xinghua1, Hu Jie2   

  1. 1. School of Aeronautics and Astronautics, Air Force Engineering University, Xi'an 710038, China;
    2. Unit 94857 of the People's Liberation Army, Wuhu 241007, China
  • Received:2013-05-17 Online:2014-03-20 Published:2014-03-29

摘要: 针对多导弹协同攻击编队控制问题,采用仿射非线性系统最优控制理论设计了基于领弹-从弹法的多导弹编队控制器.首先采用基于微分几何理论的非线性系统精确线性化方法,将导弹非线性运动模型线性化;然后根据从弹、领弹间的相对运动关系,给出了包含领弹运动信息和队形信息的从弹期望轨迹,建立了基于从弹跟踪误差向量的系统状态方程;最后采用基于稳态解的黎卡提矩阵微分方程求解方法解决最优控制问题,设计了从弹的三维非线性编队控制器;仿真结果表明所设计的控制器能够在领弹机动地情况下快速、稳定地实现编队队形的形成和保持.

Abstract: To solve the formation control problem of multi-missile formation, the optimal control theory of affine nonlinear system was adopted to design the formation controller of missiles based on leader-follower approach. Firstly, precise linearization based on differential geometry theory was used to linearize the nonlinear motion model of the missile. Secondly, according to the relative motion model of leader and follower, the desired follower track including the states of leader and the desired formation relative distances was given, and system model with follower track errors was formulated. Finally, riccati matrix differential equation solution based on steady state solution was introduced to solve the optimal control problem and a three-dimensional nonlinear optimal formation controller was designed. Simulation results show that the controller is robust to leader maneuver, and is capable of forming and keeping formation figuration rapidly, stably and exactly.

中图分类号: 


版权所有 © 《北京航空航天大学学报》编辑部
通讯地址:北京市海淀区学院路37号 北京航空航天大学学报编辑部 邮编:100191 E-mail:jbuaa@buaa.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发