北京航空航天大学学报 ›› 2014, Vol. 40 ›› Issue (9): 1200-1207.doi: 10.13700/j.bh.1001-5965.2013.0551

• 论文 • 上一篇    下一篇

直升机旋翼防/除冰电加热控制律仿真

傅见平1, 庄伟亮2, 杨波2, 常士楠2   

  1. 1. 总参陆航部 装备发展办公室, 北京 100012;
    2. 北京航空航天大学 航空科学与工程学院, 北京 100191
  • 收稿日期:2013-09-26 出版日期:2014-09-20 发布日期:2014-10-10
  • 通讯作者: 常士楠 E-mail:sn_chang@buaa.edu.cn
  • 作者简介:傅见平(1966-),男,湖南醴陵人,高级工程师,fjpfjpfjpfjp@sina.cn

Simulation of heating control law of electro-thermal deicing of helicopter rotor blade

Fu Jianping1, Zhuang Weiliang2, Yang Bo2, Chang Shinan2   

  1. 1. Equipment Development Office, Army Aviation Department, Beijing 100012, China;
    2. School of Aeronautic Science and Engineering, Beijing University of Aeronautics and Astronautics, Beijing 100191, China
  • Received:2013-09-26 Online:2014-09-20 Published:2014-10-10

摘要:

电热防除/冰系统的控制涉及到电加热与外流场的传热耦合,计算较为复杂,可利用的数据资料较为稀少。为探索电热防/除冰系统工作时与外流场的耦合传热规律,建立了二维电热除冰的数学模型,该模型在Messinger模型和改进的焓法模型基础上耦合了外表面与环境的复杂换热以及融冰和重新结冰过程的相变换热;采用控制容积法对控制微分方程进行离散后,使用TDMA(Tri-Diagonal Matrix Algorithm)和ADI(Alternating Direction Implicit)方法对离散得到的线性方程组进行求解,进而得到了除冰表面温度分布,同时揭示了电热防/除冰系统的耦合传热规律;分析了不同结冰条件下,加热时间控制律和加热热流密度对除冰表面温度的影响。计算发现合理设计加热热流密度大小及分布和加热时间控制律,可实现电热除冰系统能源的高效利用,进而确保飞行安全。

关键词: 相变换热, 电热除冰, 数值仿真, 电热控制律, 热流密度

Abstract:

The work mechanism of the electro-thermal anti/deicing system is very complex as it is related to the coupled heat transfer between the electro-thermal and the external heat flux, i.e., the convective heat transfer and phase transition heat transfer, and the data available is extremely limited. In order to explore the mechanism of the heat transfer of the electro-thermal anti/deicing mode, a two-dimensional electro-thermal deicing model was established based on the Messinger model and improved enthalpy method. The heat transfer between the icing surface and air flow, phase changes of melting and icing were coupled in the current model. The control volume method was used to discretize the differential equations, and the methods of TDMA (tri-diagonal matrix algorithm) & ADI (alternating direction implicit) were used to solve the linear equations, and then the temperature distribution on the deicing surface was finally obtained as well as the heat transfer mechanism was presented. The effects of the electric heating method and the heating flux on the temperature distribution were analyzed in different icing conditions. The results show that high efficient utilization of the electro-thermal deicing system and the flight safety guarantee can be achieved by adjusting the heat flux density and distribution and the control law of heating time properly.

Key words: phase-change heat transfer, electro-thermal deicing, numerical simulation, electro-heating control law, heat flux

中图分类号: 


版权所有 © 《北京航空航天大学学报》编辑部
通讯地址:北京市海淀区学院路37号 北京航空航天大学学报编辑部 邮编:100191 E-mail:jbuaa@buaa.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发