北京航空航天大学学报 ›› 2015, Vol. 41 ›› Issue (2): 193-197.doi: 10.13700/j.bh.1001-5965.2014.0435

• 论文 • 上一篇    下一篇

基于经验分布的区间数据分析方法

王惠文, 王圣帅, 黄乐乐, 王成   

  1. 北京航空航天大学 经济管理学院, 北京 100191
  • 收稿日期:2014-07-18 出版日期:2015-02-20 发布日期:2015-03-12
  • 通讯作者: 黄乐乐(1986—), 男, 河南济源人, 博士生, nanhuabiren@163.com,主要研究方向为复杂数据统计分析. E-mail:nanhuabiren@163.com
  • 作者简介:王惠文(1957—), 女, 河北玉田人, 教授, wanghw@vip.sina.com
  • 基金资助:

    国家自然科学基金资助项目(71031001, 71420107025); 北京航空航天大学博士研究生创新基金资助项目(YWF-14-YJSY-027); 国家863计划资助项目(SS2014AA012303)

Interval data analysis based on empirical distribution function

WANG Huiwen, WANG Shengshuai, HUANG Lele, WANG Cheng   

  1. School of Economics and Management, Beijing University of Aeronautics and Astronautics, Beijing 100191, China
  • Received:2014-07-18 Online:2015-02-20 Published:2015-03-12

摘要:

现有区间数据分析的方法通常假设数据在某一区间上服从均匀分布,这在实际数据分析中通常是不成立的.针对此问题,在原始数据来源于连续分布的简单假设下,利用经过分布函数变换后的随机变量服从(0,1)上的均匀分布,分别采用经验分布函数和核估计对原始数据的分布函数进行估计.基于此设计变换,对变换后的数据进行均匀分布的假设检验,通过检验后进行后续的区间数据分析,使得均匀分布的假定得以成立,保证了统计理论上的严谨性.数据模拟结果表明,将经验分布函数变换后的数据作为研究对象,进行区间数据分析,所得到的统计建模结果更加合理且具有较强的解释力.

关键词: 区间数据, 均匀分布, 核估计, 经验分布, 假设检验

Abstract:

Uniform distribution in some closed or tight interval is a basic assumption in the literature about interval data analysis, which is difficult to satisfy in real data processing. To solve this problem, the empirical cumulative distribution function (ECDF) and kernel estimation of cumulative distribution were studied, on the assumption that the date were from some continuous distribution. Based on ECDF and kernel estimation, a transformation to obtain new data was designed, which was uniformly distributed in theory. Then whether the distribution of transformed data was uniform distribution was tested. If the null hypothesis was not rejected, traditional methods in the field of interval data analysis could be utilized based on transformed data. The transform and the test were both for guaranteeing the transformed data were from some uniform distribution. Both simulation and real data example show that, the results based on ECDF and kernel estimation transformed data are more reasonable and with strong explanatory ability.

Key words: interval data, uniform distribution, kernel estimation, empirical distribution, hypothesis test

中图分类号: 


版权所有 © 《北京航空航天大学学报》编辑部
通讯地址:北京市海淀区学院路37号 北京航空航天大学学报编辑部 邮编:100191 E-mail:jbuaa@buaa.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发