留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

变重力场中散体颗粒堆的安息角及接触力分布

陈辉 赵先琼 刘义伦

陈辉, 赵先琼, 刘义伦等 . 变重力场中散体颗粒堆的安息角及接触力分布[J]. 北京航空航天大学学报, 2015, 41(6): 1141-1146. doi: 10.13700/j.bh.1001-5965.2014.0468
引用本文: 陈辉, 赵先琼, 刘义伦等 . 变重力场中散体颗粒堆的安息角及接触力分布[J]. 北京航空航天大学学报, 2015, 41(6): 1141-1146. doi: 10.13700/j.bh.1001-5965.2014.0468
CHEN Hui, ZHAO Xianqiong, LIU Yilunet al. Angle of repose and contact-force distribution in granular pile under variable g[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(6): 1141-1146. doi: 10.13700/j.bh.1001-5965.2014.0468(in Chinese)
Citation: CHEN Hui, ZHAO Xianqiong, LIU Yilunet al. Angle of repose and contact-force distribution in granular pile under variable g[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(6): 1141-1146. doi: 10.13700/j.bh.1001-5965.2014.0468(in Chinese)

变重力场中散体颗粒堆的安息角及接触力分布

doi: 10.13700/j.bh.1001-5965.2014.0468
基金项目: 国家自然科学基金(51275531,51374241); 湖南省研究生科研创新项目(CX2014B059)
详细信息
    作者简介:

    陈辉(1984—),男,湖南永州人,博士研究生,csuchenh@csu.edu.cn

    通讯作者:

    刘义伦(1955—),男,湖南长沙人,教授,ylliu@csu.edu.cn,主要研究方向为散体颗粒物质的传热传质机理.

  • 中图分类号: V41

Angle of repose and contact-force distribution in granular pile under variable g

  • 摘要: 为研究重力与散体颗粒堆安息角的关系,针对颗粒系统的随机性和离散性特点,通过三维离散单元法建立颗粒的运动模型,对颗粒在不同重力场中的堆积过程进行了模拟,得出了颗粒堆的安息角及接触力概率分布.结果表明:颗粒堆内接触力构成的力链呈非规则网络状,其中,接触力近似对数正态分布,约65%接触力低于平均值;接触点中约70%处于临界滑移,其余接触点切向力与法向力的比值为均匀分布;不同重力场中颗粒堆接触力的分布规律具有相似性,即接触力相对重力无量纲化之后,其分布函数高度相符;颗粒堆的微观结构具有随机性差异,但是安息角不受重力大小的影响.

     

  • [1] Brucks A, Arndt T, Ottino J M, et al.Behavior of flowing granular materials under variable g[J].Physical Review E, 2007, 75(3):032301.
    [2] Hofmeister P G, Blum J, Heiβelmann D.The flow of granular matter under reduced gravity conditions[J].American Institute of Physics Conference Proceedings, 2009, 1145:71-74.
    [3] Kleinhans M G, Markies H, Postema F N.Static and dynamic angles of repose in loose granular materials under reduced gravity[J].Journal of Geophysical Research, 2011, 116:E11004.
    [4] Nakashima H, Shioji Y, Kobayashi T, et al.Determining the angle of repose of sand under low-gravity conditions using discrete element method[J].Journal of Terramechanics, 2011, 48(1):17-26.
    [5] Atwood-Stone C, McEwen A.Avalanche slope angles in low-gravity environments from active Martian sand dunes[J].Geophysical Research Letters, 2013, 40(12):2929-2934.
    [6] Horganical H H N, Bell J F.Seasonally active slipface avalanches in the north polar sand sea of Mars:Evidence for a wind related origin[J].Geophysical Research Letters, 2012, 39(9):L09201.
    [7] Sullivan R, Anderson R, Biesiadecki J, et al.Cohesions, friction angles, and other physical properties of Martian regolith from Mars exploration rover wheel trenches and wheel scuffs[J].Journal of Geophysical Research, 2011, 116:E02006.
    [8] Wong J Y.Predicting the performance of rigid rover wheels on extraterrestrial surfaces based on test results obtained on earth[J].Journal of Terramechanics, 2012, 49(1):49-61.
    [9] 崔燚, 李雯, 王浚, 等.梯形齿车轮月面牵引性能的离散分析[J].北京航空航天大学学报, 2010, 36(3):253-256. Cui Y, Li W, Wang J, et al.Numerical analysis on traction performance of trapezia lugged wheel by distinct element method[J].Journal of Beijing University of Aeronautics and Astronautics, 2010, 36(3):253-256(in Chinese).
    [10] Guo Z G, Chen X L, Liu H F, et al.Theoretical and experimental investigation on angle of repose of biomass-coal blends[J].Fuel, 2014, 116:131-139.
    [11] Matuttis H G, Luding S, Herrmann H J.Discrete element simulation of dense packing and heaps made of spherical and non-spherical particles[J].Powder Technology, 2000, 109(1):278-292.
    [12] Radjai F, Jean M, Moreau J J, et al.Force distributions in dense two-dimensional granular systems[J].Physical Review Letters, 1996, 77(2):274-277.
    [13] Zhang L, Wang Y J, Zhang J.Force-chain distributions in granular system[J].Physical Review E, 2014, 89(1):012203.
    [14] Thornton C, Antony S J.Quasi-static shear deformation of a soft particle system[J].Powder Technology, 2000, 109(1-3):179-191.
    [15] Chung Y C, Liao H H, Hsiau S S.Convection behavior of non-spherical particles in a vibrating bed:Discrete element modeling and experimental validation[J].Powder Technology, 2013, 237:53-66.
    [16] 高峰, 李雯, 孙刚, 等.模拟月壤可行驶性的离散元数值分析[J].北京航空航天大学学报, 2009, 35(4):501-504. Gao F, Li W, Sun G, et al.Numerical analysis on travelability of lunar soil simulant by means of distinct element method[J].Journal of Beijing University of Aeronautics and Astronautics, 2009, 35(4):501-504(in Chinese).
    [17] Alberto D R, Francesco P D M.Comparison of contact-force models for the simulation of collisions in DEM-based granular flow codes[J].Chemical Engineering Science, 2004, 59(13):525-541.
    [18] Alizadeh E, Bertrand F, Chaouki J.Comparision of DEM results and Lagrangian experimental data for the flow and mixing of granules in a rotating drum[J].AIChE Journal, 2014, 60(1):60-75.
    [19] Blum J.Astrophysical microgravity experiments with dust particles[J].Microgravity Science Technology, 2010, 22(4):517-527.
    [20] Walton O R, Pamela C, Gill K S.Effects of gravity on cohesive of fine powders:Implications for processing Lunar regolith[J].Granular Matter, 2007, 9(5):353-363.
  • 加载中
计量
  • 文章访问数:  1077
  • HTML全文浏览量:  182
  • PDF下载量:  577
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-07-28
  • 网络出版日期:  2015-06-20

目录

    /

    返回文章
    返回
    常见问答