[1] ARNETT W D,BAHCALL J N,KIRSHNER R P,et al.Supernova 1987A[J].Annual Review of Astronomy and Astrophysics,1989,27(2):629-700.
[2] NORMAN M L,SMARR L,SMITH M D,et al.Hydrodynamic formation of twin-exhaust jets[J].Astrophysical Journal,1981,247(1):52-58.
[3] EVANS R G,BENNETT A J,PERT G J.Rayleigh-Taylor instabilities in laser accelerated targets[J].Physical Review Letters,1982,49(22):1639-1642.
[4] LINDL J D,MCCRORY R L,CAMPBELL E M.Progress toward ignition and burn propagation in inertial confinement fusion[J].Physics Today,1992,45(9):32-40.
[5] BEALE J C.Modeling spray atomization with the Kelvin-Helmholtz/Rayleigh Taylor hybrid model[J].Atomization and Sprays,1999,9(6):623-650.
[6] KONG S C,SENECAL P K,REITZ R D.Developments in spray modeling in diesel and direct-injection gasoline engines[J].Oil & Gas Science & Technology,1999,54(2):197-204.
[7] HSIANG L P,FAETH G M.Near-limit drop deformation and secondary breakup[J].International Journal of Multiphase Flow,1992,18(5):635-652.
[8] LEE C H,REITZ R D.An experimental study of the effect of gas density on the distortion and breakup mechanism of drops in high speed gas stream[J].International Journal of Multiphase Flow,2000,26(2):229-244.
[9] 解茂昭.燃油喷雾场结构和雾化机理[J].力学与实践,1990,12(4):9-15.XIE M Z.The structure of fuel spray field and the mechanism of atomization[J].Mechanics in Engineering,1990,12(4):9-15(in Chinese).
[10] TAYLOR G.The instability of liquid surfaces when accelerated in a direction perpendicular to their planes.I[J].Proceedings of the Royal Society of London Series A,Mathematical and Physical Sciences,1950,201(1065):192-196.
[11] BELLMAN R,PENNINGTON R H.Effects of surface tension and viscosity on Taylor instability[J].Quarterly of Applied Mathematics,1953,12(2):151-162.
[12] PIRIZ A R,CORTÁZAR O D,CELA J J L,et al.The Rayleigh-Taylor instability[J].American Journal of Physics,2006,74(12):1095-1098.
[13] SHARP D H.An overview of Rayleigh-Taylor instability[J].Physica D:Nonlinear Phenomena,1984,12(1-3):3-10.
[14] GONCHAROV V N.Analytical model of nonlinear,single-mode,classical Rayleigh-Taylor instability at arbitrary Atwood numbers[J].Physical Review Letters,2002,88(13):134502.
[15] BAKER G R,MCCRORY R L,VERDON C P,et al.Rayleigh-Taylor instability of fluid layers[J].Journal of Fluid Mechanics,1987,178:161-175.
[16] RAMAPRABHU P,DIMONTE G,WOODWARD P,et al.The late-time dynamics of the single-mode Rayleigh-Taylor instability[J].Physics of Fluids,2012,24(7):074107.
[17] RAMAPRABHU P,DIMONTE G,YOUNG Y N,et al.Limits of the potential flow approach to the single-mode Rayleigh-Taylor problem[J].Physical Review E,2006,74(6):202-212.
[18] 叶文华.激光烧蚀RT不稳定性线性增长率和非线性行为的数值研究[J].强激光与粒子束,1998,10(4):567-572.YE W H.Numerical studies of linear growth rates and nonlinear evolution of laser ablative Rayleigh-Taylor instability[J].High Power Laser and Particle Beams,1998,10(4):567-572(in Chinese).
[19] 叶文华,张维岩,陈光南,等.激光烧蚀瑞利-泰勒不稳定性数值研究[J].强激光与粒子束,1999,11(5):613-618.YE W H,ZHANG W Y,CHEN G N,et al.Numerical study of laser ablative Rayleigh-Taylor instability[J].High Power Laser and Particle Beams,1999,11(5):613-618(in Chinese).
[20] 叶文华,张维岩,贺贤土.烧蚀瑞利-泰勒不稳定性线性增长率的预热致稳公式[J].物理学报,2000,49(4):762-767.YE W H,ZHANG W Y,HE X T.Preheating stabilization formula of linear growth rate for ablative Rayleigh-Taylor instability[J].Acta Physica Sinica,2000,49(4):762-767(in Chinese).
[21] 程会方,段日强,姜胜耀.Rayleigh-Taylor不稳定性的MPS数值模拟[J].核动力工程,2010,31(s1):123-126.CHENG H F,DUAN R Q,JIANG S Y.Numerical simulation of Rayleigh-Taylor instability with MPS method[J].Nuclear Power Engineering,2010,31(s1):123-126(in Chinese).
[22] BRACKBILL J U,KOTHE D B,ZEMACH C.A continuum method for modeling surface tension[J].Journal of Computational Physics,1992,100(2):335-354.
[23] SUSSMAN M,PUCKETT E G.A coupled level set and volume-of-fluid method for computing 3D and axisymmetric incompressible two-phase flows[J].Journal of Computational Physics,2000,162(2):301-337.
[24] VAN DER PIJL S P,SEGAL A,VUIK C,et al.A mass-conserving level-set method for modeling of multi-phase flows[J].International Journal for Numerical Methods in Fluids,2005,47(4):339-361.
[25] LI Y,UMEMURA A.Two-dimensional numerical investigation on the dynamics of ligament formation by Faraday instability[J].International Journal of Multiphase Flow,2014,60(2):64-75.
[26] BAKER G R,MEIRON D I,ORSZAG S A.Vortex simulations of the Rayleigh-Taylor instability[J].Physics of Fluids,1980,23(8):1485-1490.
[27] CLANET C,LASHERAS J C.Transition from dripping to jetting[J].Journal of Fluid Mechanics,1999,383:307-326.
[28] EGGERS J,VILLERMAUX E.Physics of liquid jets[J].Reports on Progress in Physics,2008,71(3):509-514.
[29] SCHULKES R M S M.The evolution and bifurcation of a pendant drop[J].Journal of Fluid Mechanics,1994,278:83-100.
[30] UMEMURA A.Self-destabilizing mechanism of a laminar inviscid liquid jet issuing from a circular nozzle[J].Physical Review E,2011,83(4):046307. |