Adaptive backstepping control method used in DGMSCMG gimbal servo system
-
摘要: 针对双框架磁悬浮控制力矩陀螺(DGMSCMG)内、外框架伺服系统耦合力矩及传动机构的非线性传动特性影响框架角速率精度的问题,提出一种基于自适应反步的非线性鲁棒控制器的设计方法。首先分别就双框架伺服系统耦合力矩及框架传动机构的非线性传动特性对系统稳定性和角速率精度的影响进行分析;其次利用反步理论,通过构造适当的Lyapunov函数并逐级反推得到控制律,保证参数估值的收敛性和系统的全局稳定性;最后通过仿真分析并以小型DGMSCMG系统为对象进行实验,结果表明:与电流前馈控制比较,所提出的自适应反步控制方法,既增强双框架伺服系统的扰动抑制能力,又提高框架角速率精度。
-
关键词:
- 双框架磁悬浮控制力矩陀螺(DGMSCMG) /
- 自适应反步控制法 /
- 传动机构 /
- 框架角速率 /
- 耦合力矩
Abstract: To overcome the problem of the precision of gimbal angular speed control brought by the coupling torque between inner and outer gimbal of double gimbal magnetically suspended control moment gyroscope (DGMSCMG) and the nonlinear transmission characteristics of the transmission gear, a nonlinear robust controller based on adaptive backstepping control method is proposed. Firstly, the effects of the double gimbal coupling torque and the nonlinear transmission characteristics of the transmission gear on the stability of the system and the precision of gimbal angular speed are analyzed. Secondly, based on backstepping theory, the control law is recursively deduced by constructing the suitable Lyapunov function, which ensures convergence of parameter estimation and global stability of the adaptive system. Finally, simulation analysis and experiment with small DGMSCMG show that the disturbance restraint ability of double gimbal servo system and the precision of gimbal angular speed are significantly improved by the proposed method, compared with current feed-forward control. -
[1] FANG J C, LI H T,HAN B C.Torque ripple reduction in BLDC torque motor with nonideal back EMF[J].IEEE Transactions on Power Electronics,2012,27(11):4630-4637. [2] FANG J C, ZHENG S Q,HAN B C.AMB vibration control for structural resonance of double-gimbal control moment gyro with high-speed magnetically suspended rotor[J].IEEE/ASME Transactions on Mechatronics,2013,18(1):32-43. [3] 魏彤,郭蕊. 自适应卡尔曼滤波在无刷直流电机系统辨识中的应用[J].光学精密工程,2012,20(10):2308-2313. WEI T,GUO R.Application of adaptive Kalman filtering in system identification of brushless DC motor[J].Optics and Precision Engineering,2012,20(10):2308-2313(in Chinese). [4] 李海涛,房建成. 自适应角速度估计器在磁悬浮控制力矩陀螺框架伺服系统中的应用[J].光学精密工程,2008,16(1): 97-102. LI H T,FANG J C.Application of adaptive angle-rate estimator to gimbal of MGCMG[J].Optics and Precision Engineering,2008,16(1):97-102(in Chinese). [5] 房建成,陈萌, 李海涛.磁悬浮控制力矩陀螺框架系统谐波减速器的迟滞建模[J].光学精密工程,2014,22(11):2950-2958. FANG J C,CHEN M,LI H T.Hysteresis modeling for harmonic drive in DGMSCMG gimbal system[J].Optics and Precision Engineering,2014,22(11):2950-2958(in Chinese). [6] 魏彤,房建成, 刘珠荣.双框架磁悬浮控制力矩陀螺动框架效应补偿方法[J].机械工程学报,2010,46(2):159-165. WEI T,FANG J C,LIU Z R.Moving-gimbal effects compensation of double gimbal magnetically suspended control moment gyroscope based on compound control[J].Journal of Mechanical Engineering,2010,46(2):159-165(in Chinese). [7] 陈晓岑,周东华, 陈茂银.基于逆系统方法的DGMSCMG框架伺服系统解耦控制研究[J].自动化学报,2013,39(5):502-509. CHEN X C,ZHOU D H,CHEN M Y.Decoupling control of gimbal servo system of DGMSCMG based on dynamic inverse system method[J].Acta Automatic Sinica,2013,39(5):502-509(in Chinese). [8] TUTTLE T D, SEERING W P.A nonlinear mode l of a harmonic drive gear transmission[J].IEEE Transactions on Robotics and Automation,1996,12(3):368-374. [9] GODLER I, OHNISHI K,YAMASHITA T.Repetitive control to reduce speed ripple caused by strain wave gearing[C]//Proceedings of the 20th International Conference on Industrial Electronics, Control and Instrumentation.Piscataway,NJ:IEEE Press,1994,2:1034-1038. [10] GANDHI P, GHORBEL F.Closed loop compensation of kinematic error in harmonic drives for precision control applications[J].IEEE Transactions on Control Systems Technology,2002,10(6):759-768. [11] 韩邦成,马纪军, 李海涛.谐波减速器的非线性摩擦建模及补偿[J].光学精密工程,2011,19(5):1095-1103. HAN B C,MA J J,LI H T.Modeling and compensation of nonlinear friction in harmonic driver[J].Optics and Precision Engineering, 2011,19(5):1095-1103(in Chinese). [12] CHEN M, JIANG C S,WU Q X.Backstepping control for a class of uncertain nonlinear systems with neural network[J].International Journal of Nonlinear Science,2007,3(2):137- 143. [13] LIN F J, TENG L T,SHIEH P H.Intelligent adaptive backstepping control system for magnetic levitation apparatus[J].IEEE Transactions on Magnetics,2007,43(5):2009-2018. [14] LIN F J, WAI R J,CHOU W D,et al.Adaptive backstepping control using recurrent neural network for linear induction motor drive[J].IEEE Transactions on Industrial Electronics,2002,49(1): 134-146. [15] JIA Q Z, LIU Y S,LIU Z Z.Backstepping design for nonlinear control system with uncertainties[J].Journal of System Simulation,2007,19(21):5002-5007. [16] TAN Y L, CHANG J,TAN H.Adaptive friction compensation for induction motors with inertia and load uncertainties[C]//Proceedings of the American Control Conference.Piscataway,NJ:IEEE Press,2000:615-620. [17] CHANG J, TAN Y L,YU J T.Backstepping approach of adaptive control,gain selection and DSP implementation for AC servo system[C]//IEEE 38th Annual Power Electronics Specialists Conference.Piscataway,NJ:IEEE Press,2007:535-541. [18] 李红,杭影, 韩邦成,等.DGCMG框架伺服系统摩擦力矩建模与辨识.[J].振动、测试与诊断.2014,12(5):1001-1007. LI H,HANG Y,HAN B C,et al.Analysis of friction torque model of DGCMG gimbal servo system with its identification[J].Journal of Vibration Measurement and Diagnosis,2014,12(5): 1001-1007(in Chinese). [19] 闵颖颖, 刘允刚.Barbalat引理及其在系统稳定性分析中的应用.[J].山东大学学报(工学版),2007,37(1):51-55. MIN Y Y,LIU Y G.Barbalat lemma and its application in analysis of system stability[J].Journal of Shandong University (Engineering Science),2007,37(1):51-55(in Chinese).
点击查看大图
计量
- 文章访问数: 991
- HTML全文浏览量: 176
- PDF下载量: 667
- 被引次数: 0