北京航空航天大学学报 ›› 2017, Vol. 43 ›› Issue (1): 159-166.doi: 10.13700/j.bh.1001-5965.2016.0027

• 论文 • 上一篇    下一篇

磁悬浮径向球面纯电磁磁轴承的设计

赵航1, 缪存孝1, 张立元1, 韩天1, 任元2, 樊亚洪3   

  1. 1. 北京科技大学 机械工程学院, 北京 100083;
    2. 装备学院 航天装备系, 北京 101416;
    3. 北京控制工程研究所, 北京 100190
  • 收稿日期:2016-01-07 出版日期:2017-01-20 发布日期:2016-05-04
  • 通讯作者: 缪存孝,E-mail:miao_cunxiao@163.com E-mail:miao_cunxiao@163.com
  • 作者简介:赵航,男,硕士研究生。主要研究方向:航天器执行机构设计与控制;缪存孝,男,博士,讲师。主要研究方向:飞行器导航、制导与控制,航天器执行机构设计与控制。
  • 基金资助:
    中央高校基本科研业务费专项资金(FRF-TP-15-024A2,FRF-TP-14-019A1);国家自然科学基金(51475472,61403396)

Maglev electromagnetic radial spherical magnetic bearing design

ZHAO Hang1, MIAO Cunxiao1, ZHANG Liyuan1, HAN Tian1, REN Yuan2, FAN Yahong3   

  1. 1. School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083, China;
    2. Department of Space Equipment, Equipment Academy, Beijing 101416, China;
    3. Beijing Institute of Control Engineering, Beijing 100190, China
  • Received:2016-01-07 Online:2017-01-20 Published:2016-05-04
  • Supported by:
    the Fundamental Research Funds for the Central Universities (FRF-TP-15-024A2, FRF-TP-14-019A1); National Natural Science Foundation of China (51475472, 61403396)

摘要: 针对柱面磁轴承偏转时干扰力矩较大问题,本文提出一种径向球面纯电磁磁轴承设计方法。在本设计中,当磁轴承产生偏转或偏移时,电磁力会指向转子球心,从而降低定子磁极对转子产生的干扰力矩,提高磁轴承的控制精度。首先,阐述球面磁轴承的工作原理并建立数学模型,运用等效磁路理论方法和有限元数值方法分析其电流刚度和位移刚度,2种方法的计算结果基本吻合,表明球面磁轴承的有限元分析模型是合理的。接着,运用有限元方法分析球面磁轴承和柱面磁轴承产生偏转时的干扰力矩,结果表明当转子达到最大偏转角0.3°时,球面磁轴承的干扰力矩是柱面磁轴承的干扰力矩的1.8%,表明球面磁轴承相对于柱面磁轴承在抗干扰力矩能力方面有很大的提高。最后,进一步分析球面磁轴承产生X方向或Z方向偏移时的干扰力矩,计算结果与偏转时干扰力矩的量级相当。综上所述,本文提出的径向球面纯电磁磁轴承有低干扰力矩的优点,可用于航天航空工程中惯性执行机构的高精度控制和角速率检测。

关键词: 球面磁轴承, 柱面磁轴承, 干扰力矩, 偏转, 偏移

Abstract: Due to the large interference torque of deflected cylindrical magnetic bearing, this paper designs a novel electromagnetic radial spherical magnetic bearing. When the spherical bearing deflects or offsets, the electromagnetic force will keep pointing to the center of the rotor, which can reduce the interference of the stator poles on the rotor torque and improve the control precision of the magnetic bearing. First, the working principle of the spherical magnetic bearing is illustrated and its mathematical model is established. By using the theory of equivalent magnetic circuit method and finite element numerical method, the current stiffness and displacement stiffness of the spherical bearing are calculated. The results of the two methods agree well with each other, indicating that the finite element model is reasonable. Then, the finite element method is used to analyze the interference torques when spherical magnetic bearings and cylindrical magnetic bearing deflect. The calculating results show that the interference torque of the spherical magnetic bearing is 1.8% that of the cylindrical magnetic bearing when rotor reaches the maximum deflection angle 0.3°, showing that spherical magnetic bearing relative to the cylindrical magnetic bearing has greatly improved in the ability of anti-interference torque. Finally, the interference torques of the spherical magnetic bearings with X and Z offsets are also analyzed, showing that the calculation results are quite to the deflection torque. Therefore, the designed electromagnetic radial spherical magnetic bearing has the advantage of low interference torque, and can be used for high-precision control and angular rate detection of inertial actuator in aerospace engineering.

Key words: spherical magnetic bearing, cylindrical magnetic bearing, interference torque, deflect, offset

中图分类号: 


版权所有 © 《北京航空航天大学学报》编辑部
通讯地址:北京市海淀区学院路37号 北京航空航天大学学报编辑部 邮编:100191 E-mail:jbuaa@buaa.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发