留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

GO-FLOW法在飞机EHA可靠性分析中的应用

兰雪 段富海 桑勇

兰雪, 段富海, 桑勇等 . GO-FLOW法在飞机EHA可靠性分析中的应用[J]. 北京航空航天大学学报, 2017, 43(6): 1264-1270. doi: 10.13700/j.bh.1001-5965.2016.0444
引用本文: 兰雪, 段富海, 桑勇等 . GO-FLOW法在飞机EHA可靠性分析中的应用[J]. 北京航空航天大学学报, 2017, 43(6): 1264-1270. doi: 10.13700/j.bh.1001-5965.2016.0444
LAN Xue, DUAN Fuhai, SANG Yonget al. Application of GO-FLOW methodology in reliability analysis of aircraft EHA[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(6): 1264-1270. doi: 10.13700/j.bh.1001-5965.2016.0444(in Chinese)
Citation: LAN Xue, DUAN Fuhai, SANG Yonget al. Application of GO-FLOW methodology in reliability analysis of aircraft EHA[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(6): 1264-1270. doi: 10.13700/j.bh.1001-5965.2016.0444(in Chinese)

GO-FLOW法在飞机EHA可靠性分析中的应用

doi: 10.13700/j.bh.1001-5965.2016.0444
基金项目: 

航空科学基金 20150863003

详细信息
    作者简介:

    兰雪, 女, 硕士研究生。主要研究方向:系统可靠性分析与评估

    段富海, 男, 博士, 教授, 博士生导师。主要研究方向:系统可靠性分析与评估

    桑勇, 男, 博士, 副教授, 硕士生导师。主要研究方向:机电液一体化系统

    通讯作者:

    段富海, E-mail: duanfh@dlut.edu.cn

  • 中图分类号: TB114.3

Application of GO-FLOW methodology in reliability analysis of aircraft EHA

Funds: 

Aeronautical Science Foundation of China 20150863003

More Information
  • 摘要:

    应用GO-FLOW法分析了飞机电静液作动器(EHA)的可靠性。首先在EHA单元功能合理划分的基础上,建立了EHA的GO-FLOW可靠性分析模型,采用布尔代数求解描述反馈环的布尔方程,解决了GO-FLOW图不允许存在循环的难题;其次进行了GO-FLOW运算,得到EHA系统在各时间点的可靠度;再次与GO法的结果比较,验证了GO-FLOW法的可行性和准确性;最后通过MATLAB曲线拟合,得到系统可靠度随时间的变化规律,以便及时对系统进行检修和维护。结果表明GO-FLOW法只需一次运算,就可得到系统在各时间点的可靠度,在减小计算复杂度方面较GO法有优势。

     

  • 图 1  EHA系统结构原理图[10]

    Figure 1.  Structural schematic diagram of EHA system[10]

    图 2  EHA带有反馈环的结构图

    Figure 2.  EHA structure diagram with feedback loops

    图 3  求解反馈环的GO-FLOW图

    Figure 3.  GO-FLOW chart of solving feedback loops

    图 4  EHA系统的GO-FLOW图

    Figure 4.  GO-FLOW chart of EHA system

    图 5  EHA系统GO图

    Figure 5.  GO chart of EHA system

    图 6  EHA系统可靠度变化规律

    Figure 6.  System reliability changing rule of EHA

    表  1  EHA系统的操作符数据

    Table  1.   Operator data of EHA system

    编号 类型 参数 含义
    1 25 R(1)=0, R(t)=1(t≠1) 电源信号
    2 25 R(1)=0, R(t)=1(t≠1) 控制指令信号
    3 25 R(2)=1, R(t)=0(t≠2) 电机运行信号
    4 25 R(3)=1, R(t)=0(t≠3) 泵运转信号
    5 25 R(4)=300 h, R(t)=0(t≠4) 时间间隔信号
    23 25 R(1)=0, R(t)=1(t≠1) 油液信号
    6, 7 21, 35 Pg=0.999 997 9,
    λ=2.1×10-6/h
    控制器
    8, 9 26, 35 Pp=12.0×10-6,
    Pg=0.999 973 0, λ=15.0×10-6/h
    电机
    10, 11 30 与门
    12, 13 21, 35 Pg=0.999 999 5,
    λ=0.5×10-6/h
    速度传感器
    14, 15 21, 35 Pg=0.999 999 5,
    λ=0.5×10-6/h
    位移传感器
    16, 17 21, 35 Pg=0.999 999 5,
    λ=0.5×10-6/h
    压力传感器
    18 22 或门
    19, 20 26, 35 Pp=0.0, Pg=0.999 988 0,
    λ=12.0×10-6/h
    21, 24, 30 21 Pg=0.999 998 8 单向阀
    22, 25, 31 35 λ=1.27×10-6/h 单向阀
    26, 32 21 Pg=0.999 992 0 过滤器
    27, 33 35 λ=8.0×10-6/h 过滤器
    28, 34 21 Pg=0.999 996 2 安全阀
    29, 35 35 λ=3.8×10-6/h 安全阀
    36, 37 30 与门
    38, 39 21, 35 Pg=0.999 999 6,
    λ=0.4×10-6/h
    作动筒
    下载: 导出CSV

    表  2  EHA系统输出信号的强度

    Table  2.   Output signal intensity of EHA system

    操作符
    编号
    操作符
    类型
    输出信号在各时间点的强度
    1 2 3 4
    22 35 0.000 00 0.000 00 0.999 96 0.991 51
    36 30 0.000 00 0.999 83 0.999 83 0.992 02
    39 35 0.000 00 0.000 00 0.999 79 0.983 48
    下载: 导出CSV

    表  3  EHA系统各时间点输出信号的强度

    Table  3.   Output signal intensity of EHA system at each time point

    时间/h 信号强度
    操作符22 操作符36 操作符39
    0 0.999 96 0.999 83 0.999 79
    50 0.998 55 0.998 52 0.997 05
    100 0.997 13 0.997 22 0.994 32
    150 0.995 73 0.995 92 0.991 60
    200 0.994 32 0.994 62 0.988 89
    250 0.992 92 0.993 32 0.986 18
    300 0.991 51 0.992 02 0.983 48
    下载: 导出CSV
  • [1] 李军, 付永领, 王占林.机载电静液作动系统的发展现状与关键技术研究[J].航空制造技术, 2005(11):73-77. doi: 10.3969/j.issn.1671-833X.2005.11.015

    LI J, FU Y L, WANG Z L.Present development status and key technology research of airborne electro-hydrostatic actuation system[J].Aeronautical Manufacturing Technology, 2005(11):73-77(in Chinese). doi: 10.3969/j.issn.1671-833X.2005.11.015
    [2] 付永领, 邵云滨, 齐海涛, 等.集成电动静液作动系统理论与技术[J].液压与气动, 2015(5):1-9. http://www.cnki.com.cn/Article/CJFDTOTAL-YYYQ201505001.htm

    FU Y L, SHAO Y B, QI H T, et al.Integrated electro-hydrostatic actuator system:Theory and technology[J].Chinese Hydraulics & Pneumatics, 2015(5):1-9(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-YYYQ201505001.htm
    [3] WANG Y Y, ZHOU J J, CHEN W G.Assessment method for the reliability of power transformer based on fault-tree analysis[J].High Voltage Engineering, 2009, 35(3):514-520. http://en.cnki.com.cn/Article_en/CJFDTOTAL-GDYJ200903016.htm
    [4] 沈祖培, 黄祥瑞.GO法原理及应用[M].北京:清华大学出版社, 2004:57-168.

    SHEN Z P, HUANG X R.Principle and application of GO methodology[M].Beijing:Tsinghua University Press, 2004:57-168(in Chinese).
    [5] MATSUOKA T, KOBAYASHI M.GO-FLOW:A new reliability analysis methodology[J].Nuclear Science & Engineering the Journal of the American Nuclear Society, 1988, 98(1):64-78. http://www.osti.gov/scitech/biblio/5432651-go-flow-new-reliability-analysis-methodology
    [6] 林洁. GO-FLOW原理及其计算机辅助技术[D]. 长沙: 国防科学技术大学, 2003: 9-35.

    LIN J.Research on the principles and the computer aided technology of the GO-FLOW[D].Changsha:National University of Defense Technology, 2003:9-35(in Chinese).
    [7] 金霞, 段富海.基于GO法的电动静液作动器可靠性分析[J].大连理工大学学报, 2013, 53(6):846-850. doi: 10.7511/dllgxb.2013.6.010

    JIN X, DUAN F H.Reliability analysis on electro hydrostatic actuator based on GO methodology[J].Journal of Dalian University of Technology, 2013, 53(6):846-850(in Chinese). doi: 10.7511/dllgxb.2013.6.010
    [8] HASHIM M, YOSHIKAWA H, MATSUOKA T, et al.Quantitative dynamic reliability evaluation of AP1000 passive safety systems by using FMEA and GO-FLOW methodology[J].Journal of Nuclear Science & Technology, 2014, 54(4):526-542. doi: 10.1080/00223131.2014.881727?needAccess=true
    [9] 武光江, 王勇, 尚彦龙, 等.基于GO-FLOW方法的可维修系统可靠性分析[J].核动力工程, 2012, 33(2):25-29. http://www.cnki.com.cn/Article/CJFDTOTAL-HDLG201202005.htm

    WU G J, WANG Y, SHANG Y L, et al.Reliability analysis of repairable system based on GO-FLOW methodology[J].Nuclear Power Engineering, 2012, 33(2):25-29(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-HDLG201202005.htm
    [10] KANG R, JIAO Z, WANG S, et al.Design and simulation of electro -hydrostatic actuator with a built-in power regulator[J].Chinese Journal of Aeronautics, 2009, 22(6):700-706. doi: 10.1016/S1000-9361(08)60161-2
    [11] 赵静静. 基于GO法的电静液作动器可靠性研究[D]. 大连: 大连理工大学, 2014: 3-4.

    ZHAO J J.Reliability analysis on electro hydrostatic actuator based on GO methodology[D].Dalian:Dalian University of Technology, 2014:3-4(in Chinese).
    [12] MATSUOKA T. A method to solve logical loops in the GO-FLOW methodology[C]//Proceedings of PSAM-V, International Conference on Probabilistic Safety Assessment and Management, Osaka, 2000, the International Association for PSAM.London:Springer, 2000:1461-1465.
    [13] VAURIO J K.A recursive method for breaking complex logic loops in Boolean system models[J].Reliability Engineering and System Safety, 2007, 92(10):1473-1475. doi: 10.1016/j.ress.2006.09.020
    [14] MATSUOKA T.An exact method for solving logical loops in reliability analysis[J].Reliability Engineering and System Safety, 2009, 94(8):1282-1288. doi: 10.1016/j.ress.2009.01.007
    [15] YU J, YU S, SONG Y M, et al.Application of GO-FLOW methodology to the reliability evaluation in CNC machine tools[J].Advanced Materials Research, 2013, 694-697:1833-1837. doi: 10.4028/www.scientific.net/AMR.694-697
    [16] 林洁, 颜兆林, 龚时雨, 等.GO-FLOW方法及其改进的精确算法[J].系统工程与电子技术, 2005, 27(1):193-196. http://www.cnki.com.cn/Article/CJFDTOTAL-XTYD200501055.htm

    LIN J, YAN Z L, GONG S Y, et al.GO-FLOW methodology and improved exact algorithm[J].Systems Engineering and Electronics, 2005, 27(1):193-196(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-XTYD200501055.htm
  • 加载中
图(6) / 表(3)
计量
  • 文章访问数:  948
  • HTML全文浏览量:  120
  • PDF下载量:  401
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-05-24
  • 录用日期:  2016-06-24
  • 网络出版日期:  2017-06-20

目录

    /

    返回文章
    返回
    常见问答