北京航空航天大学学报 ›› 2017, Vol. 43 ›› Issue (3): 457-463.doi: 10.13700/j.bh.1001-5965.2016.0202

• 论文 • 上一篇    下一篇

跨声速副翼效率高精度静弹分析及试飞验证

何飞1,2, 杨超1, 但聃2, 刘海2, 王明2   

  1. 1. 北京航空航天大学 航空科学与工程学院, 北京 100083;;
    2. 成都飞机设计研究所 总体技术部, 成都 610000
  • 收稿日期:2016-03-15 出版日期:2017-03-20 发布日期:2016-09-12
  • 通讯作者: 何飞,E-mail:hefei1073@163.com E-mail:hefei1073@163.com
  • 作者简介:何飞,男,博士研究生,高级工程师。主要研究方向:静气动弹性、飞行载荷。;杨超,男,博士,教授,博士生导师。主要研究方向:飞行器设计、气动弹性力学、飞行动力学。

High-accuracy static aeroelastic analysis of fighter's transonic aileron efficiency and test flight verification

HE Fei1,2, YANG Chao1, DAN Dan2, LIU Hai2, WANG Ming2   

  1. 1. School of Aeronautic Science and Engineering, Beijing University of Aeronautics and Astronautics, Beijing 100083, China;;
    2. Department of General Design, Chengdu Aircraft Design & Research Institute, Chengdu 610000, China
  • Received:2016-03-15 Online:2017-03-20 Published:2016-09-12

摘要: 跨声速副翼效率一直是静弹分析领域的热点和难点问题之一。目前,基于计算流体力学(CFD)/计算结构动力学(CSD)耦合的高精度静弹分析方法用于此类问题时还存在网格变形鲁棒性以及分析结果缺乏有效验证等问题。针对上述问题,提出了基于虚拟网格及虚拟位移的网格变形方法,对于迭代中出现的非物理振荡、非一致收敛问题,采用了松弛迭代以及部件载荷综合残差收敛方法。基于上述方法,分析了某型战斗机的跨声速(Ma=0.95)副翼效率,给出了静弹变形对翼面激波位置、激波强度、压力分布的影响以及副翼效率的弹性修正系数。为验证分析结果,开展了静弹试飞辨识,两者吻合良好,表明本文所提方法可以满足复杂构型跨声速副翼效率高精度静弹分析的需求,对于提高静弹工程设计能力具有重要意义。

关键词: 静气动弹性, CFD/CSD耦合, 跨声速, 副翼效率, 试飞辨识

Abstract: The transonic aileron efficiency is a hotspot and difficulty in the field of static aeroelastic analysis. The computational fluid dynamics (CFD)/computational structural dynamics (CSD) interaction method can supply high-accuracy resolutions, but it still has problems of mesh deformation robustness and lack of verification. Aimed at the above issues, a new method of mesh deformation based on dummy grids and dummy deformation was developed, and for the problems of non-physical oscillation and non-uniformly convergence in the process of interaction, the lax iteration method and comprehensive residual criterions were used. Based on the methods, the transonic (Ma=0.95) aileron efficiency of a fighter was analyzed, and the shock position/strength and the pressure distribution due to the static aeroelastic deformation were presented. The ration of elastic and rigid aileron efficiency was compared to the results of flight identification, which proves that the methods can meet the requirement of high-accuracy analysis for transonic static aeroelastic problems of control surfaces. The methods are of great significance for static aeroelastic engineering design capability enhancement.

Key words: static aeroelasticity, CFD/CSD interaction, transonic, aileron efficiency, test flight identification

中图分类号: 


版权所有 © 《北京航空航天大学学报》编辑部
通讯地址:北京市海淀区学院路37号 北京航空航天大学学报编辑部 邮编:100191 E-mail:jbuaa@buaa.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发