留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超高速流动模拟及热化学反应模型对比研究

周凯 李旭东 胡宗民 姜宗林

周凯, 李旭东, 胡宗民, 等 . 超高速流动模拟及热化学反应模型对比研究[J]. 北京航空航天大学学报, 2017, 43(6): 1173-1181. doi: 10.13700/j.bh.1001-5965.2016.0474
引用本文: 周凯, 李旭东, 胡宗民, 等 . 超高速流动模拟及热化学反应模型对比研究[J]. 北京航空航天大学学报, 2017, 43(6): 1173-1181. doi: 10.13700/j.bh.1001-5965.2016.0474
ZHOU Kai, LI Xudong, HU Zongmin, et al. Comparative study of thermal-chemical reaction models on simulation of hypervelocity flow[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(6): 1173-1181. doi: 10.13700/j.bh.1001-5965.2016.0474(in Chinese)
Citation: ZHOU Kai, LI Xudong, HU Zongmin, et al. Comparative study of thermal-chemical reaction models on simulation of hypervelocity flow[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(6): 1173-1181. doi: 10.13700/j.bh.1001-5965.2016.0474(in Chinese)

超高速流动模拟及热化学反应模型对比研究

doi: 10.13700/j.bh.1001-5965.2016.0474
基金项目: 

国家自然科学基金 11532014

详细信息
    作者简介:

    周凯, 男, 博士研究生。主要研究方向:超高速流动显示及辐射光谱测量技术

    胡宗民, 男, 博士, 副研究员。主要研究方向:高超声速化学反应流动模拟

    通讯作者:

    胡宗民, E-mail:huzm@imech.ac.cn

  • 中图分类号: V221+.3;TB553

Comparative study of thermal-chemical reaction models on simulation of hypervelocity flow

Funds: 

National Natural Science Foundation of China 11532014

More Information
  • 摘要:

    超高速流动是飞行器再入大气层时所面临的高速高温流动环境,膨胀管是少数几种能模拟超高速流动的地面设备之一。采用数值模拟方法对超高速试验进行辅助分析诊断,流动模拟时热化学反应模型的选择对流场特性影响较大,分别选择5组分、11组分热平衡及5组分热非平衡模型,对比研究3种不同热化学反应模型对双楔试验模型数值模拟结果的影响,以进一步评估超高速流动模拟时热化学反应模型的适用范围。结果表明,试验气流条件下5组分化学模型即可满足要求,加速气流条件则必须采取11组分化学模型,而对于流动中热非平衡效应显著时,热化学非平衡模型更为适用。

     

  • 图 1  JF-16波动过程图

    Figure 1.  Sketch of wave process for JF-16

    图 2  15°~35°双楔压力分布

    Figure 2.  Pressure distribution of 15°~35° double-wedge

    图 3  15°~35°双楔流动参数沿壁面分布

    pw—壁面压力;ρw—壁面密度;ρ—来流密度;Tw—壁面温度;T—来流温度。

    Figure 3.  Flow parameter distribution along wall of 15°~35° double-wedge

    图 4  15°~35°双楔电子摩尔分数分布

    Figure 4.  Electronic mole fraction distribution of 15°~35° double-wedge

    图 5  15°~55°双楔压力分布

    Figure 5.  Pressure distribution of 15°~55° double-wedge

    图 6  15°~55°双楔流动参数沿壁面分布情况

    Figure 6.  Flow parameter distribution along wall of 15°~55° double-wedge

    图 7  15°~55°双楔电子摩尔分数分布

    Figure 7.  Electronic mole fraction distribution of 15°~55° double-wedge

    图 8  15°~35°双楔压力分布(加速气流条件)

    Figure 8.  Pressure distribution of 15°~35° double-wedge (acceleration gas condition)

    图 9  15°~35°双楔流动参数沿壁面分布(加速气流条件)

    Figure 9.  Flow parameter distribution along wall of 15°~35° double-wedge (acceleration gas condition)

    图 10  15°~35°双楔电子摩尔分数分布(加速气流条件)

    Figure 10.  Electronic mole fraction distribution of 15°~35° double-wedge (acceleration gas condition)

    图 11  15°~35°双楔压力分布(Model 1、2、3)

    Figure 11.  Pressure distribution of 15°~35° double-wedge (Model 1、2、3)

    图 12  15°~35°双楔流动参数沿壁面分布(Model 1、2、3)

    Figure 12.  Flow parameter distribution along wall of 15°~35° double-wedge (Model 1、2、3)

    表  1  试验气流和加速气流参数

    Table  1.   Flow parameters of test and acceleration gas

    气流参数 u/(km·s-1) T/K Ma p/Pa ρ/(kg·m-3)
    试验气流 8.0 2 390 7.6 9 524.550 0.011 6
    加速气流 8.8 9 335 3.2 9 220.575 0.001 7
    注:ux方向速度;T—温度;Ma—马赫数;p—压力;ρ—密度。
    下载: 导出CSV

    表  2  Dunn & Kang高温空气化学反应模型[20]

    Table  2.   Dunn & Kang chemical reaction model for air at high temperature[20]

    基元数 反应式
    1 O2+N=2O+N
    2 O2+NO=2O+NO
    3 N2+O=2N+O
    4 N2+NO=2N+NO
    5 N2+O2=2N+O2
    6 NO+O2=N++O+O2
    7 NO+N2=N++O+N2
    8 O+NO=N++O2
    9 O+N2=N++NO
    10 N+N2=2N+N
    11 O2+O=2O+O
    12 O2+O2=2O+O2
    13 O2+N2=2O+N2
    14 N2+N2=2N+N2
    15 NO+O=N++2O
    16 NO+N=O2+N
    17 NO+NO=N++O+NO
    18 O+N=NO++e-
    19 O+e-=O++2e-
    20 N+e-=N++2e-
    21 O+O=O2++e-
    22 O+O2+=O2+O+
    23 N2+N+=N++N2+
    24 N+N=N++2+e-
    25 O+NO+=NO+O+
    26 N2+O+=O+N2+
    27 N+NO+=NO+N+
    28 O2+NO+=NO+O2+
    29 O+NO+=O2+N+
    30 O2+N2=NO+NO++e-
    31 NO+N2=NO++N2+e-
    下载: 导出CSV

    表  3  15°~35°双楔粒子摩尔分数峰值

    Table  3.   Max mole fraction of species for 15°~35° double-wedge

    粒子 摩尔分数峰值
    N 0.34
    O 0.33
    NO 0.04
    N+ 6.31×10-5
    O+ 5.08×10-4
    NO+ 4.74×10-4
    e- 1.06×10-3
    下载: 导出CSV

    表  4  15°~55°双楔粒子摩尔分数峰值

    Table  4.   Max mole fraction of species for 15°~55° double-wedg

    粒子 摩尔分数峰值
    N 0.69
    O 0.31
    NO 0.03
    N+ 1.73×10-2
    O+ 6.37×10-2
    NO+ 6.29×10-3
    e- 7.66×10-2
    下载: 导出CSV

    表  5  15°~35°双楔粒子摩尔分数峰值(加速气流条件)

    Table  5.   Max mole fraction of species for 15°~35° double-wedge (acceleration gas condition)

    粒子 摩尔分数峰值
    N 0.77
    O 0.21
    NO 6.88×10-5
    N+ 0.11
    O+ 0.05
    NO+ 3.55×10-4
    e- 0.13
    下载: 导出CSV
  • [1] ANDERSON J D.Hypersonic and high temperature gas dynamics[M].New York:McGraw-Hill Book Company, 2006:449-461.
    [2] NEELY A J, MORGAN R G.The superorbital expansion tube concept, experiment and analysis[J].Aeronautical Journal, 1994, 98(973):97-105. doi: 10.1017/S0001924000050107
    [3] HORNUNG H G.Experimental hypervelocity flow simulation, needs, achievements, and limitations[C]//Proceedings of 1st Pacific International Conference on Aero-space Science and Technology.Tainan:National Cheng-Kung University, 1994:1-10.
    [4] RESLER E L, BLOXSOM D E.Very high Mach number flows by unsteady flow principles[M].New York:Cornell University Graduate School of Aeronautical Engineering, 1952:2-7.
    [5] TRIMPI R L.A preliminary theoretical study of the expansion tube:A new device for producing high-enthalpy short-duration hypersonic gas flows:NASA-TR-R133[R].Washington, D.C.:NASA, 1962. doi: 10.1007/978-3-319-23745-9_9/fulltext.html
    [6] PAULL A, STALKER R J, STRINGER I.Experiments on an expansion tube with a free piston driver[C]//Proceedings of 15th Aerodynamic Testing Conference.Reston:AIAA, 1988:173-178.
    [7] GILDFIND D E, MORGAN R G, MCGILVRAY M, et al. Simulation of high Mach number scramjet flow conditions using the X2 expansion tube:AIAA-2012-5954[R]. Reston:AIAA, 2012.
    [8] DUFRENE A, MACLEAN M, PARKER R, et al.Experimental characterization of the LENS expansion tunnel facility including blunt body surface heating:AIAA-2011-262[R]. Reston:AIAA, 2011.
    [9] 周凯, 汪球, 胡宗民, 等.爆轰驱动膨胀管性能研究[J].航空学报, 2016, 37(3):810-816. http://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201603007.htm

    ZHOU K, WANG Q, HU Z M, et al.Performance study of a detonation-driven expansion tube[J].Acta Aeronautica et Astronautica Sinica, 2016, 37(3):810-816(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201603007.htm
    [10] HOLLIS B R, PRABHU D K.Assessment of laminar, convective aeroheating prediction uncertainties for Mars entry vehicles[J].Journal of Spacecraft and Rockets, 2013, 50(1):56-68. doi: 10.2514/1.A32257
    [11] HOLDEN M S.Development of experimental facilities coupled with CFD to research key aerothermal phenomena in hypervelocity flight[C]//Proceedings of AIAA Aerospace Planes Meeting.Reston:AIAA, 2011:243-253.
    [12] SARMA G S R.Physico-chemical modelling in hypersonic flow simulation[J].Progress in Aerospace Sciences, 2000, 36(3):281-349. https://www.researchgate.net/publication/224784512_Physico_Chemical_Modelling_in_Hypersonic_Flow_Simulation
    [13] GNOFFO P A, GUPTA R N, SHINN J L.Conservation equations and physical models for hypersonic air flows in thermal and chemical nonequilibrium:NASA-TP-2867[R].Washington, D.C.:NASA, 1989.
    [14] LOSEV S A, MAKAROV V N, NIKOLSKY V S.Thermochemical nonequilibrium kinetic models in strong shock waves on air:AIAA-1994-1990[R].Reston:AIAA, 1994.
    [15] BUCK M L, BENSON B R, SIERON T R, et al.Aerodynamic and performance analyses of a superorbital re-entry vehicle[J].Dynamics of Manned Lifting Planetary Entry, 1963, 15(2):376-407.
    [16] PARK C.Assessment of a two-temperature kinetic model for dissociating and weakly ionizing nitrogen[J].Journal of Thermophysics and Heat Transfer, 1988, 2(1):8-16. doi: 10.2514/3.55
    [17] PARK C.The limits of two-temperature model:AIAA-2010-911[R].Reston:AIAA, 2010.
    [18] GUPTA R N, YOS J M, THOMPSON R A.A review of reaction rates and thermodynamic and transport properties for the 11-species air model for chemical and thermal nonequilibrium calculations to 30 000 K:NASA-TR-1232[R].Washington, D.C.:NASA, 1989.
    [19] 柳军. 热化学非平衡流及其辐射现象的实验和数值计算研究[D]. 北京: 国防科学技术大学, 2004.

    LIU J.Experimental and numerical research on thermo-chemical nonequilibrium flow with radiation phenomenon[D].Beijing:National University of Defense Technology, 2004(in Chinese).
    [20] DUNN M G, KANG S.Theoretical and experimental studies of reentry plasmas:NASA-CR-2232[R].Washington, D.C.:NASA, 1973.
    [21] HU Z M, WANG C, JIANG Z L, et al.On the numerical technique for the simulation of hypervelocity test flows[J].Computer and Fluids, 2015, 106:12-18. doi: 10.1016/j.compfluid.2014.09.039
  • 加载中
图(12) / 表(5)
计量
  • 文章访问数:  644
  • HTML全文浏览量:  65
  • PDF下载量:  569
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-06-02
  • 录用日期:  2016-07-07
  • 网络出版日期:  2017-06-20

目录

    /

    返回文章
    返回
    常见问答