[1] WU Y,LIM J,YANG M H.Online object tracking:A benchmark[C]//IEEE Conference on Computer Vision and Pattern Recognition.Piscataway,NJ:IEEE Press,2013:2411-2418.
[2] ZHANG K,ZHANG L,YANG M H.Fast compressive tracking[J].IEEE Transactions on Pattern Analysis & Machine Intelligence,2014,36(10):2002-2015.
[3] ZHONG W,LU H,YANG M H.Robust object tracking via sparse collaborative appearance model[J].IEEE Transactions on Image Processing,2014,23(5):2356-2368.
[4] ROSS D A,LIM J,LIN R S,et al.Incremental learning for robust visual tracking[J].International Journal of Computer Vision,2008,77(1-3):125-141.
[5] ADAM A,RIVLIN E,SHIMSHONI I.Robust fragments-based tracking using the integral histogram[C]//2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.Piscataway,NJ:IEEE Press,2006:798-805.
[6] KWON J,LEE K M.Visual tracking decomposition[C]//2013 IEEE Conference on Computer Vision and Pattern Recognition.Piscataway,NJ:IEEE Press,2010:1269-1276.
[7] KALAL Z,MIKOLAJCZYK,MATAS J.Tracking-learning-detection[J].IEEE Transactions on Pattern Analysis & Machine Intelligence,2011,34(7):1409-1422.
[8] GRABNER H,BISCHOF H.On-line boosting and vision[C]//2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.Piscataway,NJ:IEEE Press,2006:260-267.
[9] GRABNER H,LEISTNER C,BISCHOF H.Semi-supervised on-line boosting for robust tracking[C]//Computer Vision-ECCV 2008,European Conference on Computer Vision.Berlin:Springer,2008:234-247.
[10] BABENKO B,YANG M H,BELONGIE S.Robust object tracking with online multiple instance learning[J].IEEE Transactions on Pattern Analysis & Machine Intelligence,2011,33(8):1619-1632.
[11] ZHANG K,ZHANG L,LIU Q,et al.Fast visual tracking via dense spatio-temporal context learning[M].Berlin:Springer,2014:127-141.
[12] ZHANG K,SONG H.Real-time visual tracking via online weighted multiple instance learning[J].Pattern Recognition,2013,46(1):397-411.
[13] 丁建睿,黄剑华,刘家锋,等.局部特征与多示例学习结合的超声图像分类方法[J].自动化学报,2013,39(6):861-867.DING J R,HUANG J H,LIU J F,et al.Combining local features and multi-instance learning for ultrasound image classification[J].Acta Automatica Sinica,2013,39(6):861-867(in Chinese).
[14] VIOLA P,JONES M.Rapid object detection using a boosted cascade of simple features[C]//Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition,2001.Piscataway,NJ:IEEE Press,2001:511.
[15] CHENG M M,ZHANG Z,LIN W Y,et al.BING:Binarized normed gradients for objectness estimation at 300fps[C]//2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Piscataway,NJ:IEEE Press,2014:3286-3293.
[16] LIANG P,LIAO C,MEI X,et al.Adaptive objectness for object tracking[J].IEEE Signal Processing Letters,2016,23(7):949-953.
[17] YUAN G X,CHANG K W,HSIEH C J,et al.A comparison of optimization methods and software for large-scale L1-regularized linear classification[J].Journal of Machine Learning Research,2010,11(2):3183-3234.
[18] XU X,FRANK E.Logistic regression and boosting for labeled bags of instances[J].Lecture Notes in Computer Science,2004,3056(3):272-281.
[19] EVERINGHAM M,GOOL L V,WILLIAMS C K I,et al.The pascal visual object classes (VOC) challenge[J].International Journal of Computer Vision,2010,88(2):303-338. |