留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同稀释气体下等离子体辅助甲烷点火

沈双晏 金星 邓同晔

沈双晏, 金星, 邓同晔等 . 不同稀释气体下等离子体辅助甲烷点火[J]. 北京航空航天大学学报, 2017, 43(7): 1373-1379. doi: 10.13700/j.bh.1001-5965.2016.0544
引用本文: 沈双晏, 金星, 邓同晔等 . 不同稀释气体下等离子体辅助甲烷点火[J]. 北京航空航天大学学报, 2017, 43(7): 1373-1379. doi: 10.13700/j.bh.1001-5965.2016.0544
SHEN Shuangyan, JIN Xing, DENG Tongyeet al. Plasma assisted methane ignition under different diluent gas[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(7): 1373-1379. doi: 10.13700/j.bh.1001-5965.2016.0544(in Chinese)
Citation: SHEN Shuangyan, JIN Xing, DENG Tongyeet al. Plasma assisted methane ignition under different diluent gas[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(7): 1373-1379. doi: 10.13700/j.bh.1001-5965.2016.0544(in Chinese)

不同稀释气体下等离子体辅助甲烷点火

doi: 10.13700/j.bh.1001-5965.2016.0544
基金项目: 

国家自然科学基金 11372356

详细信息
    作者简介:

    沈双晏  男, 博士研究生。主要研究方向:等离子体辅助点火与助燃

    金星  男, 博士, 研究员, 博士生导师。主要研究方向:先进推进技术

    通讯作者:

    金星, E-mail:jinxing_beijing@sina.com

  • 中图分类号: V231.2+4;O539

Plasma assisted methane ignition under different diluent gas

Funds: 

National Natural Science Foundation of China 11372356

More Information
  • 摘要:

    等离子体由于可以同时在燃料反应中增加化学效应与热效应,有望成为辅助点火的有效技术途径。构建了基于激波管的等离子体辅助甲烷点火实验系统,测量了甲烷自点火、持续放电以及放电后断电条件下的点火延迟时间,分析了不同稀释气体下等离子体对甲烷点火延迟的缩短效果。构建了等离子体发射光谱测量系统,测量了放电单元中的发射光谱。在实验条件下,点火温度越高,持续放电下活性粒子的浓度越高。较小的放电功率( < 4 W)即可将甲烷的点火延迟时间缩短30%~95%。稀释气体为Ar时,等离子体在点火温度小于1 000 K或大于1 400 K时对甲烷点火延迟时间缩短作用更好。稀释气体为N2时,随着点火温度的升高,等离子体对甲烷点火延迟时间作用效果随之降低。

     

  • 图 1  实验系统示意图

    Figure 1.  Schematic diagram of experimental system

    图 2  发射光谱测量示意图

    Figure 2.  Schematic diagram of emission spectrum measurement

    图 3  稀释气体为Ar下不同当量比的实验结果

    Figure 3.  Experimental results of diluent gas Ar with different equivalent ratios

    图 4  稀释气体为N2下不同当量比的实验结果

    Figure 4.  Experimental results of diluent gas N2 with different equivalent ratios

    图 5  不同压强下CH4/O2/Ar混合气体的发射光谱

    Figure 5.  Mixed CH4/O2/Ar gas emission spectrum under different pressure

    图 6  不同压强下CH4/O2/N2混合气体的发射光谱

    Figure 6.  Mixed CH4/O2/ N2 gas emission spectrum under different pressure

    图 7  不同点火温度下等离子体对甲烷点火延迟时间的缩短效果

    Figure 7.  Shortening effect of plasma on methane ignition delay time under different ignition temperature

    表  1  当量比为1的不同稀释气体甲烷点火延迟时间拟合对比

    Table  1.   Fitting comparison of methane ignition delay time of equivalent ratio equals to 1 under different diluent gas

    稀释气体 拟合参数 拟合值 拟合确定系数
    Ar a -3.8221 0.9785
    b 5.2165
    N2 a -1.5697 0.9175
    b 2.9495
    下载: 导出CSV

    表  2  当量比为1的不同稀释气体在持续放电条件下甲烷点火延迟时间拟合对比

    Table  2.   Fitting comparison of methane ignition delay time of equivalent ratio equals to 1 in different diluent gas under continuous discharge

    稀释气体 拟合线型 拟合曲线
    Ar 二次函数 ln τ=-14.279 56+25.365 9(1000/T)-10.9474(1000/T)2
    N2 一次函数 ln τ=-2.6947+4.6531(1000/T)
    下载: 导出CSV
  • [1] XU B, SHI Z K.An overview on flight dynamic and control approaches for hypersonic vehicles[J]. Science China Information Sciences, 2015, 58(7):070201.
    [2] 丁猛, 余勇, 梁剑寒, 等.碳氢燃料超燃冲压发动机点火技术试验[J].推进技术, 2004, 25(6):566-569. http://www.cnki.com.cn/Article/CJFDTOTAL-TJJS200904000.htm

    DING M, YU Y, LIANG J H, et al.Experimental investigation of ignition technology in liquid hydrocarbon fueled scramjet combustor[J]. Journal of Propulsion Technology, 2004, 25(6):566-569(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-TJJS200904000.htm
    [3] STARIKOVSKIY A, ALEKSANDROV N.Plasma-assisted ignition and combustion[J]. Progress in Energy and Combustion Science, 2013, 39(1):61-110. doi: 10.1016/j.pecs.2012.05.003
    [4] JU Y G, SUN W T.Plasma assisted combustion:Dynamics and chemistry[J]. Progress in Energy and Combustion Science, 2015, 48:21-83. doi: 10.1016/j.pecs.2014.12.002
    [5] GUNDERSEN M.Energy-efficient transient plasma ignition and combustion:No.F49620-01-1-0322[R].[S.l.]:AFOSR, 2004.
    [6] KOSAREV I N, ALEKSANDROV N L, KINDYSHEVA S M, et al.Kinetic mechanism of plasma-assisted ignition of hydrocarbons[J]. Journal of Physics D: Applied Physics, 2008, 41(3):032002. doi: 10.1088/0022-3727/41/3/032002
    [7] KOSAREV I N, PAKHOMOV A I, KINDYSHEVA S V, et al.Nanosecond discharge ignition of lean C2H2-containing mixture:AIAA-2013-1050[R]. Reston:AIAA, 2013.
    [8] KOSAREV I N, PAKHOMOV A I, KINDYSHEVA S V, et al.Nanosecond discharge ignition in acetylene-containing mixtures[J]. Plasma Source Science and Technology, 2013, 22(4):447-450.
    [9] KOSAREV I N, ALEKSANDROV N L, KINDYSHEVA S V, et al.Kinetics of ignition of saturated hydrocarbons by nonequilibrium plasma:C2H6-to C5H12-containing mixtures[J]. Combustion and Flame, 2009, 156(1):221-233. doi: 10.1016/j.combustflame.2008.07.013
    [10] KOSAREV I N, ALEKSANDROV N L, KINDYSHEVA S V, et al.Kinetic mechanism of plasma-assisted ignition of hydrocarbons[J]. Journal of Physics D:Applied Physics, 2008, 41(3):295-302. doi: 10.2514/6.2008-5068
    [11] BOUMEHDI M A, STEPANYAN S A, DESGROUX P, et al.Ignition of methane-and n-butane-containing mixtures at high pressures by pulsed nanosecond discharge[J]. Combustion and Flame, 2014, 162(4):1336-1349. http://linkinghub.elsevier.com/retrieve/pii/S0010218014003484
    [12] KIMURA I, AOKI H, KATO M.The use of a plasma jet for fame stabilization and promotion of combustion in supersonic air flows[J]. Combust and Flame, 1981, 42:297-305. doi: 10.1016/0010-2180(81)90164-4
    [13] JACOBSEN L S, CARTER C D, BAURLE R A, et al.Plasma-assisted ignition in scramjets[J]. Journal of Propulsion and Power, 2008, 24(4):641-654. doi: 10.2514/1.27358
    [14] MASUYA G, TAKITA K, TAKAHASHI K, et al.Effects of airstream mach number on H/N plasma igniter[J]. Journal of Propulsion and Power, 2002, 18(3):679-685. doi: 10.2514/2.5984
    [15] TAKITA K, ABE N, MASUYA G, et al.Ignition enhancement by addition of NO and NO2, from a N2/O2, plasma torch in a supersonic flow[J]. Proceedings of the Combustion Institute, 2007, 31(2):2489-2496. doi: 10.1016/j.proci.2006.07.108
    [16] 杜洪亮, 何立明, 兰宇丹, 等.约化场强对氮-氧混合气放电等离子体演化特性的影响[J].物理学报, 2011, 60(11):115201. doi: 10.7498/aps.60.115201

    DU H L, HE L M, LAN Y D, et al.Influence of reduced electric field on the evolvement characteristics of plasma under conditions of N2/O2 discharge[J]. Acta Physica Sinica, 2011, 60(11):115201(in Chinese). doi: 10.7498/aps.60.115201
    [17] 韦宝禧, 欧东, 闫明磊, 等.超燃燃烧室等离子体点火和火焰稳定性能[J].北京航空航天大学学报, 2012, 38(12):1572-1576. http://bhxb.buaa.edu.cn/CN/abstract/abstract12467.shtml

    WEI B X, OU D, YAN M L, et al.Ignition and flame holding ability of plasma torch igniter in a supersonic flow[J]. Journal of Beijing University of Aeronautics and Astronautics, 2012, 38(12):1572-1576(in Chinese). http://bhxb.buaa.edu.cn/CN/abstract/abstract12467.shtml
    [18] 张鹏, 洪延姬, 丁小雨, 等.等离子体对含硼两相流扩散燃烧特性的影响[J].物理学报, 2015, 64(20):205203. doi: 10.7498/aps.64.205203

    ZHANG P, HONG Y J, DING X Y, et al.Effect of plasma on boron-based two-phase flow diffusion combustion[J]. Acta Physica Sinica, 2015, 64(20):205203(in Chinese). doi: 10.7498/aps.64.205203
    [19] KIM K, SHIN K S.Shock tube and modeling study of the ignition of propane[J]. Bulletin-Korean Chemical Society, 2001, 22(3):303-307. https://www.researchgate.net/profile/Kilyoung_Kim/publication/220032623_Shock_Tube_and_Modeling_Study_of_the_Ignition_of_Propane/links/0fcfd505ca8957ee3c000000.pdf
    [20] VRIES J D, HALL J M, SIMMONS S L, et al.Ethane ignition and oxidation behind reflected shock waves[J]. Combustion and Flame, 2007, 150(1):137-150.
    [21] 沈双晏, 金星, 张鹏.甲烷-空气混合气体放电等离子体增强点火机理分析[J].推进技术, 2015, 36(10):1509-1515. http://www.cnki.com.cn/Article/CJFDTOTAL-TJJS201510009.htm

    SHEN S Y, JIN X, ZHANG P.Analysis on mechanism of plasma enhanced ignition of methane-air discharge[J]. Journal of Propulsion Technology, 2015, 36(10):1509-1515(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-TJJS201510009.htm
    [22] DAVIDSON D F, HANSON R K.Interpreting shock tube ignition data[J]. International Journal of Chemical Kinetics, 2004, 36(9):510-523. doi: 10.1002/(ISSN)1097-4601
    [23] 张百灵, 王宇天, 李益文, 等.低气压直流辉光放电数值模拟与实验研究[J].高电压技术, 2016, 42(3):724-730. http://www.cnki.com.cn/Article/CJFDTOTAL-GDYJ201603005.htm

    ZHANG B L, WANG Y T, LI Y W, et al.Numerical simulation and experimental study for low-pressure direct-current glow discharge[J]. High Voltage Engineering, 2016, 42(3):724-730(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-GDYJ201603005.htm
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  701
  • HTML全文浏览量:  74
  • PDF下载量:  547
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-06-23
  • 录用日期:  2016-10-14
  • 网络出版日期:  2017-07-20

目录

    /

    返回文章
    返回
    常见问答