留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

小型飞机自动着舰系统设计准则适用性分析

赵荣 王立新 徐王强

赵荣, 王立新, 徐王强等 . 小型飞机自动着舰系统设计准则适用性分析[J]. 北京航空航天大学学报, 2017, 43(12): 2488-2496. doi: 10.13700/j.bh.1001-5965.2016.0857
引用本文: 赵荣, 王立新, 徐王强等 . 小型飞机自动着舰系统设计准则适用性分析[J]. 北京航空航天大学学报, 2017, 43(12): 2488-2496. doi: 10.13700/j.bh.1001-5965.2016.0857
ZHAO Rong, WANG Lixin, XU Wangqianget al. Analysis of design principle adaptability to automatic carrier landing system of light plane[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(12): 2488-2496. doi: 10.13700/j.bh.1001-5965.2016.0857(in Chinese)
Citation: ZHAO Rong, WANG Lixin, XU Wangqianget al. Analysis of design principle adaptability to automatic carrier landing system of light plane[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(12): 2488-2496. doi: 10.13700/j.bh.1001-5965.2016.0857(in Chinese)

小型飞机自动着舰系统设计准则适用性分析

doi: 10.13700/j.bh.1001-5965.2016.0857
详细信息
    作者简介:

    赵荣 男, 硕士研究生。主要研究方向:飞行力学、飞行器设计

    王立新 男, 博士, 教授, 博士生导师。主要研究方向:飞机设计、飞行力学与飞行控制

    通讯作者:

    王立新,E-mail: wlxc818@163.com

  • 中图分类号: V249.122+.5

Analysis of design principle adaptability to automatic carrier landing system of light plane

More Information
  • 摘要:

    在进行自动着舰系统(ACLS)设计时,美军标AR-40A是目前较为常用的参考设计准则,但该准则的要求主要针对F/A-18等Ⅳ类飞机提出,并未说明在应用于Ⅰ类飞机自动着舰系统设计时的适用性。为研究AR-40A在Ⅰ类飞机自动着舰系统设计时的适用性,针对某型飞机及其尺寸缩比率为4的缩比机进行了全自动着舰系统设计。通过飞机-航母-大气环境综合仿真,选取着舰效果较好的全自动着舰系统设计结果,通过对其频域特性曲线分析对比,验证了AR-40A在Ⅰ类飞机自动着舰系统设计中的适用性。通过原型机、缩比机、F/A-18三者的频域特性对比,提出了AR-40A在应用于小型飞机自动着舰系统设计时应进行的低频段、中高频段划分及幅值、相角带宽频率等关键边界要求的修改建议,拓展了该准则的适用范围。

     

  • 图 1  自动着舰系统引导控制结构图

    Figure 1.  Structure chart of guidance and control of automatic carrier landing system

    图 2  原型机和缩比机自动着舰点分布

    Figure 2.  Touching point distribution of automatic carrier landing for prototype and shrinkage aircrafts

    图 3  高度变化率对高度变化率指令的频域特性曲线

    Figure 3.  Frequency-domain characteristic curves of altitude change rate to altitude change rate instruction

    图 4  高度变化率对高度变化率指令的频域边界要求

    Figure 4.  Frequency-domain boundary requirement of altitude change rate to altitude change rate instruction

    图 5  高度对高度指令的频域特性曲线s

    Figure 5.  Frequency-domain characteristic curves of altitude to altitude instruction

    图 6  高度对高度指令的频域边界要求

    Figure 6.  Frequency-domain boundary requirement of altitude to altitude instruction

    图 7  滚转角对滚转角指令的频域特性曲线

    Figure 7.  Frequency-domain characteristic curves of roll angle to roll angle instruction

    图 8  滚转角对滚转角指令的频域边界要求

    Figure 8.  Frequency-domain boundary requirement of roll angle to roll angle instruction

    图 9  侧向位移对侧向位移指令的频域特性曲线

    Figure 9.  Frequency-domain characteristic curves of lateral displacement to lateral displacement instruction

    图 10  侧向位移对侧向位移指令的频域边界要求

    Figure 10.  Frequency-domain boundary requirement of lateral displacement to lateral displacement instruction

    表  1  等效系统模态特性

    Table  1.   Modal characteristics of equivalent system

    运动模态 参数 原型 缩比
    短周期 ωn1·Tθ2/rad
    ζn1
    2.34
    0.87
    7.35
    0.71
    长周期 ζn2 0.09 0.19
    荷兰滚 ωd/(rad·s-1)
    ζd
    1.04
    0.51
    1.52
    0.49
    滚转收敛 TR/s 0.34 0.17
    螺旋 TS/s 30.5 22.8
    下载: 导出CSV

    表  2  频域特性设计指标选取

    Table  2.   Selection of design index for frequency-domain characteristics

    频域特性 验证目标
    高度变化率对高度变化率指令 纵向飞控系统响应特性
    高度对高度指令 纵向着舰引导控制律
    滚转角对滚转角指令 侧向飞控系统响应特性
    侧向位移对侧向位移指令 侧向着舰引导控制律
    下载: 导出CSV

    表  3  初始设置条件的改变规则

    Table  3.   Changing rules of initial settings

    分组序号 随机数种子 垂荡位移初始相位集合/rad 横滚角初始相位集合/rad 纵摇角初始相位集合/rad 艏摇角初始相位集合/rad
    Set 1 23 341
    Set 2 985
    Set 3 985
    下载: 导出CSV

    表  4  原型机着舰误差的统计结果

    Table  4.   Statistical results of carrier landing errors for prototype aircraft

    分组序号 纵向平均误差/m 纵向散布误差/m |xerr|<3.05 m 侧向平均误差/m 侧向散布误差/m |yerr|<1.22 m
    Set 1 1.144 0 2.424 8 30/36 0.040 3 0.225 5 36/36
    Set 2 2.153 3 1.872 4 20/36 0.006 3 0.311 0 36/36
    Set 3 2.117 3 2.161 7 20/36 0.430 5 0.499 8 35/36
    均值 1.804 9 2.153 0 70/108 0.159 0 0.345 4 107/108
    评价指标[15] ±3.05 <7.32 ±1.22 <1.52
    下载: 导出CSV

    表  5  缩比机着舰误差的统计结果

    Table  5.   Statistical results of carrier landing errors for shrinkage aircraft

    分组序号 纵向平均误差/m 纵向散布误差/m |xerr|<3.05 m 侧向平均误差/m 侧向散布误差/m |yerr|<1.22 m
    Set 1 -0.120 7 3.495 8 18/36 -0.975 1 0.553 8 24/36
    Set 2 1.082 2 3.095 7 24/36 -0.502 4 0.551 3 34/36
    Set 3 3.291 3 3.630 8 15/36 0.190 0 0.433 4 36/36
    均值 1.417 6 3.695 8 57/108 -0.429 2 0.703 6 94/108
    评价指标[15] ±3.05 <7.32 ±1.22 <1.52
    下载: 导出CSV
  • [1] 杨一栋.无人机着舰制导与控制[M].北京:国防工业出版社, 2013:7-18.

    YANG Y D.Guidance and control of UAV carrier landing[M].Beijing:National Defense Industry Press, 2013:7-18(in Chinese).
    [2] URNES J M, HESS R K.Development of the F/A-18A automatic carrier landing system[J].Journal of Guidance, Control, and Dynamics, 1985, 8(3):289-295. doi: 10.2514/3.19978
    [3] PRICKETT A L, PARKES C J.Flight testing of the F/A-18E/F automatic carrier landing system[C]//2001 IEEE Aerospace Conference.Piscataway, NJ:IEEE Press, 2001:2593-2612. http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=931220
    [4] SCHUST A P, YOUNG P N, SIMPSON W R.Automatic carrier landing system (ACLS) category Ⅲ certification manual:1506-01-1-2750[R].Annapolis:ARINC Research Corp., 1982. http://agris.fao.org/openagris/search.do?recordID=AV2012091979
    [5] 郭锁凤, 申功璋, 吴成富.先进飞行控制系统[M].北京:国防工业出版社, 2003:214-218.

    GUO S F, SHEN G Z, WU C F.Advanced flight control system[M].Beijing:National Defense Industry Press, 2013:214-218(in Chinese).
    [6] 杨一栋, 郑峰婴, 王新华.舰载机等效模型及着舰控制规范[M].北京:国防工业出版社, 2013:5-18.

    YANG Y D, ZHENG F Y, WANG X H.Equivalent model of carrier-based aircraft and landing control specification[M].Beijing:National Defense Industry Press, 2013:5-18(in Chinese).
    [7] 张明廉, 徐军.舰载飞机自动着舰系统的研究[J].北京航空航天大学学报, 1994, 20(4):386-391. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=bjhk404.006&dbname=CJFD&dbcode=CJFQ

    ZHANG M L, XU J.The research of automatic carrier-based aircraft landing system[J].Journal of Beijing University of Aeronautics and Astronautics, 1994, 20(4):386-391(in Chinese). http://kns.cnki.net/KCMS/detail/detail.aspx?filename=bjhk404.006&dbname=CJFD&dbcode=CJFQ
    [8] 章卫国, 王新民, 刘长林.舰载飞机纵向自动着舰控制系统研究[J].西北工业大学学报, 1996, 14(4):549-553. http://www.cqvip.com/QK/97591A/200701/24469958.html

    ZHANG W G, WANG X M, LIU C L.The research of longitudinal carrier-based aircraft automatic landing control system[J].Journal of Northwestern Polytechnical University, 1996, 14(4):549-553(in Chinese). http://www.cqvip.com/QK/97591A/200701/24469958.html
    [9] URNES J M, HESS R K, MOOMAW R F.H-dot automatic carrier landing system for approach control in turbulence[J].Journal of Guidance, Control, and Dynamics, 1981, 4(2):177-183. doi: 10.2514/3.56069
    [10] 杨一栋.舰载机着舰引导技术译文集[M].北京:国防工业出版社, 2004:73-84.

    YANG Y D.Translation of carrier-guided technology of shipboard[M].Beijing:National Defense Industry Press, 2004:73-84(in Chinese).
    [11] RUDOWSKY T, HYNES M, LUTER M, et al.Review of the carrier approach criteria for carrier-based aircraft-Phase Ⅰ:Final report:NAWCADPAX/TR-2002/71[R].Maryland:Naval Air Warfare Center Aircraft Division Patuxent River, 2002. https://www.researchgate.net/publication/266579861_REVIEW_OF_THE_CARRIER_APPROACH_CRITERIA_FOR_CARRIER-BASED_AIRCRAFT_-PHASE_I_FINAL_REPORT
    [12] Department of Defense, US.Flying qualities of piloted aircraft:MIL-STD-1797A[S].Washington, D.C.:Department of Defense, US, 1995.
    [13] BUTTRILL C S, ARBUCKLE P D, HOFFLER K D.Simulation model of a twin-tail, high performance airplane:NASA TM 107601[R].Hampton:Langley Research Center, 1992. https://www.researchgate.net/publication/24296888_Simulation_model_of_a_twin-tail_high_performance_airplane
    [14] 杨一栋.舰载飞机着舰引导与控制[M].北京:国防工业出版社, 2007:105-106, 188-195.

    YANG Y D.Guidance and control of carrier-based aircraft[M].Beijing:National Defense Industry Press, 2007:105-106, 188-195(in Chinese).
    [15] 杨一栋.着舰安全与复飞技术[M].北京:国防工业出版社, 2013:33-36.

    YANG Y D.Landing and go-around technical security[M].Beijing:National Defense Industry Press, 2013:33-36(in Chinese).
    [16] 陈孟钢, 高金源.缩比模型飞机极其飞控系统与原型机的相似关系[J].飞行力学, 2003, 21(2):34-37. doi: 10.3969/j.issn.1002-0853.2003.02.010

    CHEN M G, GAO J Y.Similarity relationships between scaled-model aircraft with its flight control system and prototype aircraft[J].Flight Dynamics, 2003, 21(2):34-37(in Chinese). doi: 10.3969/j.issn.1002-0853.2003.02.010
  • 加载中
图(10) / 表(5)
计量
  • 文章访问数:  701
  • HTML全文浏览量:  73
  • PDF下载量:  741
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-11-08
  • 录用日期:  2017-01-20
  • 网络出版日期:  2017-12-20

目录

    /

    返回文章
    返回
    常见问答