北京航空航天大学学报

• •    

液氢绕水翼非定常空化流动特性研究

孙铁志1,张桂勇2,魏英杰3,宗智4   

  1. 1. 大连理工大学 船舶工程学院
    2. 大连理工大学
    3. 哈尔滨工业大学航天学院
    4. 大连理工大学工业装备结构分析国家重点实验室
  • 收稿日期:2016-11-17 修回日期:2017-01-19 发布日期:2017-04-07
  • 通讯作者: 张桂勇
  • 基金资助:
    国家自然科学基金重点项目;中央高校基本科研业务费专项资金资助;黑龙江省自然科学基金

Study of the Characteristics of Unsteady Cavitating Flow around Hydrofoil in Liquid Hydrogen

  • Received:2016-11-17 Revised:2017-01-19 Published:2017-04-07

摘要: 为探究液氢非定常空化流动特征,以NACA0015水翼为研究对象,通过对CFX求解平台进行二次开发,在能量方程中考虑了汽化潜热影响,引入考虑空化热力学效应的修正Zwart空化模型和基于标准 模型的局部时均化湍流模型,通过与试验结果对比,验证了数值方法的有效性。基于建立的数值方法,开展了液氢绕水翼非定常空化流动数值计算。结果表明:水翼表面温度场分布与流场空泡演变特性密切相关,在空化核心区、空泡闭合位置以及脱落的空泡团内温度梯度值较高,水翼中截面温降值较小;随着空化数的增加,最大升阻力系数呈减小趋势变化,平均升力系数逐渐增大,平均阻力系数逐渐减小;在小空化数下空泡脱落过程中回射流动强烈,水翼表面温度梯度分布范围广泛,在水翼近壁面区域出现大量高强度的旋涡,而在大空化数下高强度的旋涡主要存在于附着空泡的汽液交界面

关键词: 液氢, 水翼, 非定常, 空化流动, 热力学效应

Abstract: In order to address the characteristics of unsteady cavitating flow in liquid hydrogen, numerical simulations are investigated around the NACA0015 hydrofoil by using secondary development of computational fluid dynamics (CFD) code CFX. The latent heat of evaporation is considered in the energy equation, an extended thermodynamics Zwart cavitation model and Partially-Averaged Navier-Stokes ( PANS) method are applied in the numerical simulations. Experimental measurements of cavity evolution and pressure are utilized to validate the computational strategy. The results show that temperature field distribution around hydrofoil is closely related to the cavity evolution characteristics of the flow field, the predicted temperature gradient is higher in the core region, the closure position of the cavitation and the interior area of the shedding cavity, the predicted temperature is lower at the mid-plane. The maximum lift coefficient, drag coefficient and the average drag coefficient gradually decreases with the increasing cavitation numbers, whereas as cavitation number increases, the average lift coefficient becomes larger. For the cases of cavitating flow with small cavitation number, the reentrant flow is stronger and a lot of high-intensity vortices appear in the near-wall region of the hydrofoil, the . However, the high-intensity vortices for large cavitation number mainly exist in the vapor-liquid interface.

Key words: liquid hydrogen, hydrofoil, unsteady, cavitating flow, thermodynamic effect


版权所有 © 《北京航空航天大学学报》编辑部
通讯地址:北京市海淀区学院路37号 北京航空航天大学学报编辑部 邮编:100191 E-mail:jbuaa@buaa.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发