留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

热挤压对YAl2p/Mg-14Li-3Al复合材料组织和性能的影响

邱相儒 吴国清 潘英才 王刚刚 葛大梁

邱相儒, 吴国清, 潘英才, 等 . 热挤压对YAl2p/Mg-14Li-3Al复合材料组织和性能的影响[J]. 北京航空航天大学学报, 2017, 43(12): 2547-2553. doi: 10.13700/j.bh.1001-5965.2016.0900
引用本文: 邱相儒, 吴国清, 潘英才, 等 . 热挤压对YAl2p/Mg-14Li-3Al复合材料组织和性能的影响[J]. 北京航空航天大学学报, 2017, 43(12): 2547-2553. doi: 10.13700/j.bh.1001-5965.2016.0900
QIU Xiangru, WU Guoqing, PAN Yingcai, et al. Effect of hot extrusion on structure and properties of YAl2p/Mg-14Li-3Al composites[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(12): 2547-2553. doi: 10.13700/j.bh.1001-5965.2016.0900(in Chinese)
Citation: QIU Xiangru, WU Guoqing, PAN Yingcai, et al. Effect of hot extrusion on structure and properties of YAl2p/Mg-14Li-3Al composites[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(12): 2547-2553. doi: 10.13700/j.bh.1001-5965.2016.0900(in Chinese)

热挤压对YAl2p/Mg-14Li-3Al复合材料组织和性能的影响

doi: 10.13700/j.bh.1001-5965.2016.0900
基金项目: 

国家自然科学基金 50901005

航空科学基金 2010ZF51068

详细信息
    作者简介:

    邱相儒 男,硕士研究生。主要研究方向:镁锂基复合材料挤压成型

    吴国清 男,博士,副教授。主要研究方向:轻质合金及复合材料设计与成型技术

    通讯作者:

    吴国清, E-mail: guoqingwu@buaa.edu.cn

  • 中图分类号: TG376.2

Effect of hot extrusion on structure and properties of YAl2p/Mg-14Li-3Al composites

Funds: 

Foundation items: National Natural Science Foundation of China 50901005

Aeronautical Science Foundation of China 2010ZF51068

More Information
  • 摘要:

    利用搅拌铸造法制备出不同体积分数的YAl2p/Mg-14Li-3Al复合材料,然后将其挤压成薄壁管材,通过金相显微镜、扫描电镜和万能试验机等手段研究了热挤压变形对复合材料显微组织及力学性能的影响。结果表明,通过热挤压变形,YAl2p增强体的分散性得到改善,复合材料的显微组织明显细化,力学性能显著提升。其中挤压态体积分数为1%的YAl2p/Mg-14Li-3Al复合材料与铸态相比,抗拉强度和屈服强度均提高了60%以上,塑性得到改善。在挤压的过程中,复合材料的挤压力峰值与Mg-14Li-3Al合金相比略有增加,且挤压力峰值达到的时间存在滞后的现象。

     

  • 图 1  YAl2p/Mg-14Li-3Al复合材料拉伸试样尺寸

    Figure 1.  Geometry of tensile specimens of YAl2p/ Mg-14Li-3Al composites

    图 2  Mg-14Li-3Al合金与体积分数为1%的YAl2p/ Mg-14Li-3Al复合材料的挤压力-时间关系

    Figure 2.  Relationships between extrusion pressure and extrusion time of Mg-14Li-3Al alloy and YAl2p/ Mg-14Li-3Al composite with volume fraction of 1%

    图 3  铸态与挤压态体积分数为1%的YAl2p/ Mg-14Li-3Al复合材料的SEM照片

    Figure 3.  SEM photographs of as-cast and as-extruded YAl2p/ Mg-14Li-3Al composites with volume fraction of 1%

    图 4  铸态与挤压态体积分数为1%的YAl2p/ Mg-14Li-3Al复合材料的金相组织照片

    Figure 4.  Optical micrographs of as-cast and as-extruded YAl2p/ Mg-14Li-3Al composites with volume fraction of 1%

    图 5  铸态与挤压态体积分数为1%的YAl2p/ Mg-14Li-3Al复合材料的XRD谱图

    Figure 5.  XRD patterns of as-cast and as-extruded YAl2p/ Mg-14Li-3Al composites with volume fraction of 1%

    图 6  复合材料平均晶粒尺寸随YAl2p体积分数的变化关系

    Figure 6.  Changing relationship of average grain size of composites with volume fraction of YAl2p

    图 7  不同状态下YAl2p体积分数对复合材料力学性能的影响

    Figure 7.  Effect of volume fraction of YAl2p on mechanical property of composites in different conditions

    图 8  不同状态下复合材料硬度值随YAl2p体积分数的变化关系

    Figure 8.  Changing relationship of hardness of composites with volume fraction of YAl2p in different conditions

    表  1  LA143镁合金的主要化学成分

    Table  1.   Main chemical composition of LA143 magnesium alloy

    元素 Li Al Ca Ce Fe Mn Mg
    质量分数/% 13.6 2.7 0.016 0.019 0.048 0.025 83.292
    下载: 导出CSV
  • [1] TROJANOVA Z, DROZD Z, KUDELA S, et al.Strengthening in Mg-Li matrix composites[J].Composites Science and Technology, 2007, 67(9):1965-1973. doi: 10.1016/j.compscitech.2006.10.007
    [2] KUDELA S.Magnesium-lithium matrix composites[J].International Journal of Materials and Product Technology, 2003, 18(13):91-115. https://www.deepdyve.com/lp/inderscience-publishers/magnesium-lithium-matrix-composites-an-overview-7ojRNSqKmb
    [3] RAWAL S P.Metal-matrix composites for space applications[J].The Journal of the Minerals Metals and Materials Society, 2001, 53(4):14-17. doi: 10.1007/s11837-001-0139-z
    [4] 秦径为, 彭谦之, 周海涛, 等.Mg-8Li-3Al-Y镁锂合金板材热轧及退火组织与性能[J].稀有金属, 2015, 39(7):577-582. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=zxjs201507001&dbname=CJFD&dbcode=CJFQ

    QIN J W, PENG Q Z, ZHOU H T, et al.Microstructure and mechanical properties of hot-rolled and annealed Mg-8Li-3Al-Y alloys[J].Chinese Journal of Rare Metals, 2015, 39(7):577-582(in Chinese). http://kns.cnki.net/KCMS/detail/detail.aspx?filename=zxjs201507001&dbname=CJFD&dbcode=CJFQ
    [5] LI N, ZHANG Q Q, NIU L Y, et al.Microstructure, properties and application of YAl2 intermetallic compound as particle reinforcement[J].Materials Science and Engineering:A, 2014, 617:139-145. doi: 10.1016/j.msea.2014.08.047
    [6] SHOROWORDI K M, LAOUI T, HASEEB A S M A, et al.Microstructure and interface characteristics of B4C, SiC and Al2O3 reinforced Al matrix composites:A comparative study[J].Journal of Materials Processing Technology, 2003, 142(3):738-743. doi: 10.1016/S0924-0136(03)00815-X
    [7] AMOURI K, KAZEMI S, MOMENI A, et al.Microstructure and mechanical properties of Al-nano/micro SiC composites produced by stir casting technique[J].Materials Science and Engineering:A, 2016, 674:569-578. doi: 10.1016/j.msea.2016.08.027
    [8] ZHANG X, WU G Q, LING Z H A, et al.Novel method to control agglomeration of ultrafine YAl2 particles in YAl2p/MgLiAl composites[J].Materials Letters, 2011, 65(1):104-106. doi: 10.1016/j.matlet.2010.09.028
    [9] SAJJADI S A, EZATPOUR H R, BEYGI H.Microstructure and mechanical properties of Al-Al2O3 micro and nano composites fabricated by stir casting[J].Materials Science and Engineering:A, 2011, 528:8765-8771. doi: 10.1016/j.msea.2011.08.052
    [10] AYYAR A, CHAWLA N.Microstructure-based modeling of the influence of particle spatial distribution and fracture on crack growth in particle-reinforced composites[J].Acta Materialia, 2007, 55(18):6064-6073. doi: 10.1016/j.actamat.2007.06.044
    [11] CHEN J, BAO C, CHEN F.Evolutions of microstructure and mechanical properties for Mg-Al/AlN composites under hot extrusion[J].Materials Science and Engineering:A, 2016, 667:426-434. doi: 10.1016/j.msea.2016.05.033
    [12] CHANG H, WANG X, HU X, et al.Effects of reinforced particles on dynamic recrystallization of Mg base alloys during hot extrusion[J].Rare Metal Materials and Engineering, 2014, 43(8):1821-1825. doi: 10.1016/S1875-5372(14)60138-7
    [13] QI G, FANG C, BAI Y, et al.Effect of hot extrusion on microstructures and properties of TiB2/AZ31 magnesium based composites[J].Rare Metal Materials and Engineering, 2011, 40(8):1339-1343. doi: 10.1016/S1875-5372(11)60053-2
    [14] 中华人民共和国国家质量监督检验检疫总局, 中国标准化管理委员会. 金属材料拉伸试验第1部分: 室温试验方法: GB/T 228. 1-2010[S]. 北京: 中国标准出版社, 2010.

    General Administration of Quality Supervision, Standardization Administration of China. Metallic materials-Tensile testing-Part 1:Method of test at room temperature:GB/T 228.1-2010[S].Beijing:China Standards Press, 2010(in Chinese).
    [15] HASHIM J, LOONEY L, HASHMI M S J. Particle distribution in cast metal matrix composites-part Ⅰ[J].Journal of Materials Processing Technology, 2002, 123(2):251-257. doi: 10.1016/S0924-0136(02)00098-5
    [16] FU H M, ZHANG M X, QIU D, et al.Grain refinement by AlN particles in Mg-Al based alloys[J].Journal of Alloys and Compounds, 2009, 478(1-2):809-812. doi: 10.1016/j.jallcom.2008.12.029
    [17] CHEN T J, JIANG X D, MA Y, et al.Grain refinement of AZ91D magnesium alloy by SiC[J].Journal of Materials Science, 2010, 496(1-2):218-225. https://www.sciencedirect.com/science/article/pii/S0925838810004561
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  517
  • HTML全文浏览量:  58
  • PDF下载量:  472
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-11-29
  • 录用日期:  2017-02-24
  • 网络出版日期:  2017-12-20

目录

    /

    返回文章
    返回
    常见问答