留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氧在钒中基本热力学行为的第一性原理研究

桂漓江 刘悦林

桂漓江, 刘悦林. 氧在钒中基本热力学行为的第一性原理研究[J]. 北京航空航天大学学报, 2017, 43(5): 918-926. doi: 10.13700/j.bh.1001-5965.2016.0357
引用本文: 桂漓江, 刘悦林. 氧在钒中基本热力学行为的第一性原理研究[J]. 北京航空航天大学学报, 2017, 43(5): 918-926. doi: 10.13700/j.bh.1001-5965.2016.0357
GUI Lijiang, LIU Yuelin. Basic thermodynamic property of oxygen in vanadium: A first-principles study[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(5): 918-926. doi: 10.13700/j.bh.1001-5965.2016.0357(in Chinese)
Citation: GUI Lijiang, LIU Yuelin. Basic thermodynamic property of oxygen in vanadium: A first-principles study[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(5): 918-926. doi: 10.13700/j.bh.1001-5965.2016.0357(in Chinese)

氧在钒中基本热力学行为的第一性原理研究

doi: 10.13700/j.bh.1001-5965.2016.0357
基金项目: 

国家自然科学基金 11575153

详细信息
    作者简介:

    桂漓江, 男, 博士。主要研究方向:凝聚态物理

    刘悦林, 男, 博士, 副教授。主要研究方向:凝聚态物理

    通讯作者:

    刘悦林, E-mail:liuyl@ytu.edu.cn

  • 中图分类号: TG111

Basic thermodynamic property of oxygen in vanadium: A first-principles study

Funds: 

National Natural Science Foundation of China 11575153

More Information
  • 摘要:

    钒(V)是核聚变反应堆结构材料的重要候选材料。实验表明杂质氧(O)会对V的结构和力学性能产生极大的影响。采用基于密度泛函理论的第一性原理方法研究了O在V中热力学稳定性、扩散特性以及与缺陷空位的相互作用。O在V中易于占据八面体间隙位,其溶解能为-4.942 eV。O在间隙位的最佳扩散路径为八面体间隙位→四面体间隙位→八面体间隙位,扩散激活能为1.728 eV,在此基础上对不同温度下的扩散系数在文中给出了详细分析。O在V中与空位存在很强的吸引相互作用,1个O原子和2个O原子被空位捕获时的捕获能分别为-0.484 eV和-0.510 eV。当O原子的数量超过3,其捕获能变为正值0.382 eV,因此单空位最多能够结合2个O原子,这意味着“O1-vacancy”和“O2-vacancy”团簇在V中很容易形成。这些研究结果将对V基合金在核聚变反应堆中的最终应用具有一定的参考价值。

     

  • 图 1  V的晶格常数与能量的关系曲线

    Figure 1.  Energy-lattice constant curve for V

    图 2  O在V中的原子结构和价电荷密度分布

    Figure 2.  Atomic structure and valence charge density distribution of O in V

    图 3  态密度

    Figure 3.  Density of states

    图 4  O在V中间隙位的扩散能垒

    Figure 4.  Diffusion energy barrier of O at interstitial sites in V

    图 5  O与空位结合的最佳电子密度等值面

    “+”代表O结合在等值面的6个能量最低位置。

    Figure 5.  Isosurface of optimal electron density for O binding at one vacancy

    图 6  “O1-vacancy”团簇在(001) 平面上的电荷密度分布

    V原子和O原子分别处在不同的(001) 平面。

    Figure 6.  Charge density distribution of "O1-vacancy" cluster on (001) plane

    图 7  O在V中以“sequential”方式进入单空位时捕获能随O原子数目增加的变化曲线

    Figure 7.  Changing curve of trapping energy of O with increase of number of atoms at one vacancy in V via "sequential" way

    表  1  O在128原子V超晶胞中八面体间隙位和四面体间隙位中溶解能的测试结果

    Table  1.   Tested solution energy results of O at OIS and TIS in 128-atom V supercell

    eV
    测试对象 截止能 k
    250 300 350 400 450 1×1×1 2×2×2 3×3×3 4×4×4
    EOs(OIS) -4.928 -4.935 -4.942 -4.943 -4.943 -4.902 -4.935 -4.942 -4.942
    EOs(TIS) -3.693 -3.761 -3.779 -3.778 -3.778 -3.689 -3.762 -3.779 -3.778
    注:先选取一个较大的8×8×8 k点对截止能进行测试,测试结果取为350 eV,并采用350 eV的截止能对k点进行测试,测试结果取为3×3×3 k点。
    下载: 导出CSV

    表  2  O在V中300 ~1000K温度范围内的扩散系数

    Table  2.   Diffusion coefficient of O in V at different temperatures from 300 to 1000K

    T/K D/(m2·s-1)
    300 2.16×10-36
    400 3.91×10-29
    500 8.84×10-25
    600 7.05×10-22
    700 8.35×10-20
    800 3.00×10-18
    900 4.86×10-17
    1000 4.51×10-16
    下载: 导出CSV
  • [1] LIU Y L, ZHOU H B, JIN S, et al.Effects of H on electronic structure and ideal tensile strength of W:A first-principles calculation[J].Chinese Physics Letters, 2010, 27(12):127101. doi: 10.1088/0256-307X/27/12/127101
    [2] LIU Y L, JIN S, ZHANG Y, et a.l Interaction between impurity nitrogen and tungsten:A first-principles investigation[J].Chinese Physics B, 2012, 21(1):016105. doi: 10.1088/1674-1056/21/1/016105
    [3] LIU Y L, GAO A Y, LU W, et al. Optimal electron density mechanism for hydrogen on the surface and at a vacancy in tungsten[J].Chinese Physics Letters, 2012, 29(7):077101. doi: 10.1088/0256-307X/29/7/077101
    [4] LIU Y L, LU W, GAO A Y, et al.First-principles investigation on diffusion behaviours of H isotopes:From W(110) surface into bulk and in bulk W[J].Chinese Physics B, 2012, 21(12):126103. doi: 10.1088/1674-1056/21/12/126103
    [5] LIU Y L, ZHANG Y, HONG R J, et al.Study of theoretical tensile strength of Fe by a first-principles computational tensile test[J].Chinese Physics B, 2009, 18(5):1923-1930. doi: 10.1088/1674-1056/18/5/033
    [6] SMITH D L, CHUNG H M, LOOMIS B A, et al.Reference vanadium alloy V-4Cr-4Ti for fusion application[J].Journal of Nuclear Materials, 1996, 233-237:356-363. doi: 10.1016/S0022-3115(96)00231-0
    [7] CHUNG H M, LOOMIS B A, SMITH D L.Development and testing of vanadium alloys for fusion applications[J].Journal of Nuclear Materials, 1996, 239:139-156. doi: 10.1016/S0022-3115(96)00676-9
    [8] SATOU M, ABE K, KAYANO H.High-temperature deformation of modified V-Ti-Cr-Si type alloys[J].Journal of Nuclear Materials, 1991, 179:757-761. http://www.sciencedirect.com/science/article/pii/002231159190199H
    [9] SATO S, TANAKA T, HORI J, et al.Radioactivity of the vanadium-alloy induced by D-T neutron irradiation[J].Journal of Nuclear Materials, 2004, 329:1648-1652. http://www.sciencedirect.com/science/article/pii/S0022311504003411
    [10] MARKOVSKIJ D V, FORREST R A, KOVALCHUK V D, et al.Experimental activation study of some Russian vanadium alloys with 14-MeV neutrons at SNEG-13 facility[J].Fusion Engineering and Design, 2001, 58:591-594. http://cat.inist.fr/?aModele=afficheN&cpsidt=13416559
    [11] BLOOM E E, CONN R W, DAVIS J W, et al.Low activation materials for fusion applications[J].Journal of Nuclear Materials, 1984, 122(1):17-26. http://www.sciencedirect.com/science/article/pii/0022311584905701
    [12] BUTTERWORTH G J, MCCARTHY K A, SMOLIK G R, et al.Safety and environmental aspects of vanadium alloys[J].Journal of Nuclear Materials, 1994, 212:667-672. http://www.sciencedirect.com/science/article/pii/0022311594901422?via%3Dihub
    [13] TSAI H, BRAY T S, MATSUI H, et al.Effects of low-temperature neutron irradiation on mechanical properties of vanadium-base alloys[J].Journal of Nuclear Materials, 2000, 283:362-366. http://www.sciencedirect.com/science/article/pii/S0022311500002245
    [14] LOOMIS B A, SMITH D L, GARNER F A.Swelling of neutron-irradiated vanadium alloys[J].Journal of Nuclear Materials, 1991, 179:771-774. http://www.sciencedirect.com/science/article/pii/002231159190306R?via%3Dihub
    [15] OHNUKI S, TAKAHASHI H, KINOSHITA H, et al.Void formation and precipitation in neutron irradiated vanadium alloys[J].Journal of Nuclear Materials, 1988, 155:935-939.
    [16] LOOMIS B A, SMITH D L.Vanadium alloys for structural applications in fusion systems:A review of vanadium alloy mechanical and physical properties[J].Journal of Nuclear Materials, 1992, 191:84-91.
    [17] BORGSTEDT H U, GRUNDMANN M, KONYS J, et al.A vanadium alloy for the application in a liquid metal blanket of a fusion reactor[J].Journal of Nuclear Materials, 1988, 155:690-693.
    [18] BORGSTEDT H U, FEUERSTEIN H.The solubility of metals in Pb-17Li liquid alloy[J].Journal of Nuclear Materials, 1992, 191:988-991.
    [19] SMITH D L, CHUNG H M, LOOMIS B A, et al.Development of vanadium-base alloys for fusion first-wall—Blanket applications[J].Fusion Engineering and Design, 1995, 29:399-410. doi: 10.1016/0920-3796(95)80046-Z
    [20] LOOMIS B A, HULL A B, SMITH D L.Evaluation of low-activation vanadium alloys for use as structural material in fusion reactors[J].Journal of Nuclear Materials, 1991, 179:148-154.
    [21] SATO T, OKITA T, SEKIMURA N.Effects of solid transmutation and helium on microstructural evolution in neutron-irradiated vanadium[J].Journal of Nuclear Materials, 2002, 307:385-388.
    [22] 谌继明, 室贺健夫, 许增裕, 等.聚变应用钒合金抗氢脆性能的合金化设计[J].金属学报, 2002, 38(8):839-843. http://www.cnki.com.cn/Article/CJFDTOTAL-JSXB200208010.htm

    CHEN J M, MUROGA T, XU Z Y, et al.Alloying design for fusion application vanadium alloys based on hydrogen embrittlement resistance[J].Acta Metallurgica Sinica, 2002, 38(8):839-843(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-JSXB200208010.htm
    [23] 吴仲成, 彭述明, 杨茂年, 等.有效介质理论计算He原子在金属钒中的扩散行为[J].金属学报, 2004, 40(1):36-39. http://www.cnki.com.cn/Article/CJFDTOTAL-JSXB200401006.htm

    WU Z C, PENG S M, YANG M N, et al.Calculation of diffusion barriers for helium atom in vanadium by effective medium theory[J].Acta Metallurgica Sinica, 2004, 40(1):36-39(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-JSXB200401006.htm
    [24] ZHANG P B, ZHAO J J, QIN Y, et al.Stability and dissolution of helium-vacancy complexes in vanadium solid[J].Journal of Nuclear Materials, 2011, 419:1-8. doi: 10.1016/j.jnucmat.2011.08.023
    [25] ZHANG P B, ZHAO J J, QIN Y, et al Stability and migration property of helium and self defects in vanadium and V-4Cr-4Ti alloy by first-principles[J].Journal of Nuclear Materials, 2011, 413:90-94. doi: 10.1016/j.jnucmat.2011.03.031
    [26] KURTZ R J, ABE K, CHERNOV V M, et al.Recent progress on development of vanadium alloys for fusion[J].Journal of Nuclear Materials, 2004, 329:47-55.
    [27] ALKHAMEES A, ZHOU H B, LIU Y L, et al.First-principles investigation on dissolution and diffusion of oxygen in tungsten [J].Journal of Nuclear Materials, 2009, 393:508-512. doi: 10.1016/j.jnucmat.2009.07.012
    [28] ALKHAMEES A, ZHOU H B, LIU Y L, et al.Vacancy trapping behaviors of oxygen in tungsten:A first-principles study[J].Journal of Nuclear Materials, 2013, 437:6-10. doi: 10.1016/j.jnucmat.2013.01.317
    [29] KRESSE G, HAFNER J.Ab initio molecular dynamics for liquid metals[J].Physical Review B, 1993, 47(1):558-561. doi: 10.1103/PhysRevB.47.558
    [30] KRESSE G, FURTHMVLLER J.Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[J].Physical Review B, 1996, 54(16):11169-11186. doi: 10.1103/PhysRevB.54.11169
    [31] PERDEW J P, BURKE K, ERNZERHOF M.Generalized gradient approximation made simple[J].Physical Review Letters, 1996, 77:3865-3868. doi: 10.1103/PhysRevLett.77.3865
    [32] KRESSE G, JOUBERT D.From ultrasoft pseudopotentials to the projector augmented-wave method[J].Physical Review B, 1999, 59(3):1758-1775. doi: 10.1103/PhysRevB.59.1758
    [33] KITTEL C.Introduction to solid state physics[M].7th ed.New York:Wiley, 1996:23.
    [34] MONKHORST H J, PACK J D.Special points for Brillouin-zone integrations[J].Physical Review B, 1976, 13(12):5188-5192. doi: 10.1103/PhysRevB.13.5188
    [35] HOGLUND L, AGREN J.Simulation of carbon diffusion in steel driven by a temperature gradient[J].Journal of Phase Equilibria and Diffusion, 2010, 31(3):212-215. doi: 10.1007/s11669-010-9673-0
    [36] WERT C, ZENER C.Interstitial atomic diffusion coefficients[J].Physical Review, 1949, 76(8):1169-1175. doi: 10.1103/PhysRev.76.1169
    [37] HENKELMAN G.A climbing image nudged elastic band method for finding saddle points and minimum energy paths[J].Journal of Chemical Physics, 2000, 113(22):9901-9904. doi: 10.1063/1.1329672
    [38] FUKAI Y, ŌKUMA N.Formation of superabundant vacancies in Pd hydride under high hydrogen pressures[J].Physical Review Letters, 1994, 73(12):1640-1643. doi: 10.1103/PhysRevLett.73.1640
    [39] LU G, KAXIRAS E.Hydrogen embrittlement of aluminum:The crucial role of vacancies[J].Physical Review Letters, 2005, 94(15):155501. doi: 10.1103/PhysRevLett.94.155501
    [40] GAVINI V, BHATTACHARYA K, ORTIZ M.Vacancy clustering and prismatic dislocation loop formation in aluminum[J].Physical Review B, 2007, 76(18):180101. doi: 10.1103/PhysRevB.76.180101
    [41] DISTEFANO J R, DEVAN J H.Reactions of oxygen with V-Cr-Ti alloys[J].Journal of Nuclear Materials, 1997, 249:150-158. doi: 10.1016/S0022-3115(97)00217-1
    [42] HAUTOJARVI P, JOHANSSON J, VEHANEN A.Vacancy-carbon interaction in iron[J].Physical Review Letters, 1980, 44(20):1326-1329. doi: 10.1103/PhysRevLett.44.1326
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  698
  • HTML全文浏览量:  89
  • PDF下载量:  415
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-04-29
  • 录用日期:  2016-05-20
  • 网络出版日期:  2017-05-20

目录

    /

    返回文章
    返回
    常见问答