北京航空航天大学学报 ›› 2017, Vol. 43 ›› Issue (12): 2473-2479.doi: 10.13700/j.bh.1001-5965.2016.0927

• 论文 • 上一篇    下一篇

超流体量子干涉陀螺热驱动方式建模与分析

赵玉龙1, 沈怀荣2, 任元2   

  1. 1. 装备学院 研究生管理大队, 北京 101416;
    2. 装备学院 航天装备系, 北京 101416
  • 收稿日期:2016-12-08 修回日期:2017-03-10 出版日期:2017-12-20 发布日期:2017-06-27
  • 通讯作者: 任元 E-mail:renyuan_823@aliyun.com
  • 作者简介:赵玉龙,男,博士研究生。主要研究方向:先进惯性测量与控制技术;任元,男,博士,副教授。主要研究方向:先进惯性测量与控制技术。
  • 基金资助:
    国家自然科学基金(51475472);国家“863”计划(2015AA8018038C)

Modeling and analysis of superfluid quantum interference gyro driven by heat

ZHAO Yulong1, SHEN Huairong2, REN Yuan2   

  1. 1. Department of Graduate Management, Equipment Academy, Beijing 101416, China;
    2. Department of Space Equipment, Equipment Academy, Beijing 101416, China
  • Received:2016-12-08 Revised:2017-03-10 Online:2017-12-20 Published:2017-06-27
  • Supported by:
    National Natural Science Foundation of China (51475472); National High-tech Research and Development Program of China (2015 AA8018038C)

摘要: 超流体量子干涉陀螺采用热驱动方式时,陀螺内部流量、压强、温度多参数变化及相互影响,致使加热电阻功率与超流体在弱连接处形成的约瑟夫森频率关系复杂。为了保证陀螺持续稳定的工作在约瑟夫森频率下,必须对陀螺内部约瑟夫森频率的形成机理进行精确建模。针对超流体陀螺热驱动工作方式,首先,从陀螺内腔流体的熵变角度出发,建立了陀螺的温度变化、压强变化和输入-输出模型;然后,仿真分析了在恒定加热电阻功率和线性时变加热电阻功率时超流体陀螺温度和压强随时间的变化特性,对比不同加热电阻功率对陀螺的化学势差和约瑟夫森频率的影响,得出加热电阻功率的工作区间以及约瑟夫森频率的范围;最后,探索分析了约瑟夫森频率对超流体陀螺输出和陀螺精度的影响。

关键词: 超流体量子干涉陀螺, 热驱动, 建模, 化学势差, 约瑟夫森频率

Abstract: Multi-parameter change and interaction of internal flow, pressure and temperature lead to a complex relationship between heating resistor power and superfluid Josephson frequency when the superfluid quantum interference gyro is driven by heat. In order to obtain sustained and stable Josephson frequency, the Josephson frequency formation mechanism of gyro must be accurately modeled. With regard to heat-driven mode of superfluid quantum interference gyro, the temperature change, pressure change and input-output model of gyro were firstly established in terms of the inner cavity entropy change. Then, the characteristics of temperature and pressure change with time were analyzed under the condition of constant heating resistor power and linear time-varying heating resistor power. The ranges of heating resistance power and Josephson frequency were obtained by comparing the chemical potential difference and Josephson frequency at different heating resistance power. Finally, the effect of Josephson frequency on output and accuracy of the gyro is explored and analyzed.

Key words: superfluid quantum interference gyro, heat-driven, modeling, chemical potential difference, Josephson frequency

中图分类号: 


版权所有 © 《北京航空航天大学学报》编辑部
通讯地址:北京市海淀区学院路37号 北京航空航天大学学报编辑部 邮编:100191 E-mail:jbuaa@buaa.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发