北京航空航天大学学报 ›› 2018, Vol. 44 ›› Issue (2): 391-398.doi: 10.13700/j.bh.1001-5965.2017.0111

• 论文 • 上一篇    下一篇

平衡摇臂式移动机器人姿态控制算法

刘本勇, 高峰, 姜惠, 张彬   

  1. 北京航空航天大学 交通科学与工程学院, 北京 100083
  • 收稿日期:2017-03-02 修回日期:2017-04-06 出版日期:2018-02-20 发布日期:2017-06-27
  • 通讯作者: 高峰,E-mail:gaof@buaa.edu.cn E-mail:gaof@buaa.edu.cn
  • 作者简介:刘本勇,男,硕士研究生。主要研究方向:特种车辆;高峰,男,博士,教授,博士生导师。主要研究方向:智能车辆与特种车辆。
  • 基金资助:
    国家自然科学基金(51675027);"十三五"重大专项(2016YFD0700503-1)

Attitude control algorithm of balancing-arm mobile robot

LIU Benyong, GAO Feng, JIANG Hui, ZHANG Bin   

  1. School of Transportation Science and Engineering, Beijing University of Aeronautics and Astronautics, Beijing 100083, China
  • Received:2017-03-02 Revised:2017-04-06 Online:2018-02-20 Published:2017-06-27
  • Supported by:
    National Natural Science Foundation of China (51675027);The 13th Five Years Major Project (2016YFD0700503-1)

摘要: 以具有平衡摇臂机构的移动机器人为研究对象,设计一种基于非线性规划遗传算法的姿态控制算法,提高越障过程中工作平台的平稳性。首先简化平衡摇臂机构并定义表征移动机器人空间状态的姿态参数。利用空间机构学位姿变换方程推导出所定义的空间姿态参数与轮心相对位置之间的数学关系。然后设计非线性规划遗传算法,以移动机器人稳定性条件为约束设计遗传算法适应度函数并求解目标姿态控制参数。为验证所设计的姿态控制算法,在ADAMS软件中搭建移动机器人三维模型和障碍路面模型,并联合MATLAB/Simulink对移动机器人进行了运动学仿真。仿真结果表明在该姿态算法的控制下,与不施加主动姿态控制相比较,移动机器人通过搭建的障碍路面时最大侧倾角由10.8°降低到了1.8°,质心高度变化幅值度由96.4 mm降低到了34.9 mm,证明了姿态控制算法的有效性。

关键词: 平衡摇臂, 运动学建模, 空间姿态, 遗传算法, 非线性规划

Abstract: In order to improve the stability of working platform in the process of obstacle negotiation, with balancing-arm mobile robot as research object, an attitude control algorithm was designed based on nonlinear programming genetic algorithm. First, the simplified model of balancing-arm mechanism was built and spatial posture parameters were defined to character the space state of robot. Mathematical relationship between spatial posture parameters and wheel center positions was deduced by coordinate transformation equation based on spatial mechanism. Then, a nonlinear programming genetic algorithm was designed. The genetic algorithm fitness function used to solve objective control parameters was established under the constraint of stability. To verify the performance of the proposed attitude control algorithm, 3D model of the mobile robot and road were built in the ADAMS software, and then kinematics simulation studies were carried out by ADAMS and MATLAB/Simulink. The results of simulation show that when balance-arm mobile robot passes through the designed obstacles with the designed controller, the roll angle falls from 10.8° to 1.8° compared with no controller and the amplitude of wheel center position falls from 96.4 mm to 34.9 mm as also. The simulation results demonstrate the validity of the proposed attitude control algorithm.

Key words: balancing-arm, kinematical modeling, spatial attitude, genetic algorithm, nonlinear programming

中图分类号: 


版权所有 © 《北京航空航天大学学报》编辑部
通讯地址:北京市海淀区学院路37号 北京航空航天大学学报编辑部 邮编:100191 E-mail:jbuaa@buaa.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发