-
摘要:
颗粒冲击材料现象广泛存在于自然界以及工业领域中。应用实验测量与数值计算相结合的方法研究了颗粒射流冲击材料(304不锈钢)的磨损行为。考虑了颗粒粒径、运动轨迹、颗粒-壁面撞击点分布以及所导致材料物相结构变化。实验测试包括材料质量损耗、材料元素X射线衍射(XRD)分析、表面微观结构扫描电镜(SEM)观察。对相应的颗粒射流冲击材料行为进行了数值计算,获得流场,颗粒场以及相应材料磨损。结果表明:颗粒射流冲击下颗粒运动轨迹与撞击点的分布不同,造成了材料样品表面磨损区域明显不同。颗粒-壁面碰撞不仅会导致材料损失而且会造成材料物相结构的变化。
Abstract:Particle-material impact is popular in the nature and industries. In this work, experimental measurement and numerical calculation were carried out to investigate the particle impinging jet effect on the behaviour of material (304 stainless steel). Herein, particle diameter, particle tracking trajectories, particle-wall collision point distribution were considered to study material loss and the phase change of material structure. In the experimental work, the measurements were carried out for material mass loss, material element X-ray diffractometry (XRD) analysis, surface micro-structure scanning electron microscopy (SEM) observation and so on. In addition, the behaviour of particle impinging jet impact on wall material was studied by numerical simulations. Particularly, flow fields, particle trajectories and wall material loss were obtained. The results show that particle collision point distribution is quite different from their tracking trajectories under particle impinging jet impact, which causes the wear zones on sample surface different from each other obviously. It is concluded that particle-wall impact will not only lead to material loss but also cause the phase change of material structure.
-
Key words:
- particle /
- impinging jet /
- wear /
- numerical simulation /
- experiment research
-
表 1 304不锈钢化学成分
Table 1. Chemical composition of 304 stainless steel
成份 C Si Mn P S N Cr Ni Fe 质量分数/% 约0.024 约0.550 约1.800 约0.030 约0.001 约0.049 约18.200 约8.200 剩余 表 2 石英砂不同时间段的粒径分布
Table 2. Particle size distribution with different time period
冲蚀
时间/h颗粒粒径质量分数/% 粒径
50~60目粒径
60~70目粒径
70~80目粒径
>80目0 100 0 0 0 12 36.3 45.8 10.9 7 48 25.6 29.8 32.5 12.1 -
[1] 马志宏, 李运泽, 张华, 等.砂尘环境试验设备中颗粒浓度场的实验研究[J], 北京航空航天大学学报, 2005, 31(8):884-887. http://bhxb.buaa.edu.cn/CN/abstract/abstract10089.shtmlMA Z H, LI Y Z, ZHANG H, et al.Experimental study on particle concentration in sand and dust equipment[J].Journal of Beijing University of Aeronautics and Astronautics, 2005, 31(8):884-887(in Chinese). http://bhxb.buaa.edu.cn/CN/abstract/abstract10089.shtml [2] TRIBBLE A C, BOYADJIAN B, DAVIS J, et al.Contamination control engineering and design guidelines for the aerospace community-results:AIAA-1996-4375[R].Reston:AIAA, 1996. [3] ARNOLD G S.Spacecraft contamination model development[J].Proceedings of SPIE, 1998, 3427:272-289. doi: 10.1117/12.328499 [4] BARENGOLTZ J.Molecular and particulate containments:A contamination data base within environment:AIAA-1988-0014[R].Reston:AIAA, 1988. [5] TRIBBLE A C.The space environment:Implications for spacecraft design[M].Princeton:Princeton University Press, 1995:183. [6] THOMAS B S, GRAHAM S A, DAVID F H, et al.Photochemical spacecraft self-contamination:Laboratory results and system impacts[J].Journal of Spacecraft and Rockets, 1989, 26(5):358-367. doi: 10.2514/3.26080 [7] 唐萍, 朱光武, 秦国泰, 等.航天器表面污染物质沉积变化和控制因子评估[J].北京航空航天大学学报, 2015, 41(5):891-896. http://bhxb.buaa.edu.cn/CN/abstract/abstract13251.shtmlTANG P, ZHU G W, QIN G T, et al.Changes of contamination deposition on spacecraft surface and evaluation of control factors[J].Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(5):891-896(in Chinese). http://bhxb.buaa.edu.cn/CN/abstract/abstract13251.shtml [8] ZHAO Y L, ZHOU F, YAO J, et al.Erosion-corrosion behaviour and corrosion resistance of AISI 316 stainless steel in flow jet impingement[J].Wear, 2015, 328-329:464-474. doi: 10.1016/j.wear.2015.03.017 [9] FAN J R, YAO J, CEN K F.Antierosion in a 90° bend by particle impaction[J].AIChE Journal, 2002, 48(7):1401-1412. doi: 10.1002/(ISSN)1547-5905 [10] FAN J, YAO J, ZHANG X Y.Experimental and numerical investigation of a new method for protecting bends from erosion in gas-particle fows[J].Wear, 2001, 251:853-860. doi: 10.1016/S0043-1648(01)00742-6 [11] JIN T, LUO K, WU F, et al.Numerical investigation of erosion on astaggered tube bank by particle laden flows with immersed boundary method[J].Applied Thermal Engineering, 2014, 62(2):444-454. doi: 10.1016/j.applthermaleng.2013.10.004 [12] YAO J, ZHOU F, ZHAO Y L.Investigation of erosion of stainless steel by two-phase jet impingement[J].Applied Thermal Engineering, 2015, 88:353-362. doi: 10.1016/j.applthermaleng.2014.08.056 [13] FINNIE I, STEVICK G R, RIDGELY J R.The influence of impingement angle on the erosion of ductile metals by angular abrasive particles[J].Wear, 1992, 152(1):91-98. doi: 10.1016/0043-1648(92)90206-N [14] BITTER J G.A study of erosion phenomena[J].Wear, 1963, 6(1):5-21. doi: 10.1016/0043-1648(63)90003-6 [15] ARIBO S, BARKER R, HU X, et al.Erosion-corrosion behaviour of lean duplex stainless steel in 3.5wt% NaCl solution[J].Wear, 2013, 302(1-2):1602-1608. doi: 10.1016/j.wear.2012.12.007