北京航空航天大学学报 ›› 2018, Vol. 44 ›› Issue (4): 700-708.doi: 10.13700/j.bh.1001-5965.2017.0228

• 论文 • 上一篇    下一篇

基于Rao-Blackwellized蒙特卡罗数据关联的检测跟踪联合优化

陈唯实, 闫军, 李敬   

  1. 中国民航科学技术研究院机场研究所, 北京 100028
  • 收稿日期:2017-04-13 出版日期:2018-04-20 发布日期:2018-04-27
  • 通讯作者: 陈唯实 E-mail:chenwsh@mail.castc.org.cn
  • 作者简介:陈唯实,男,博士,高级工程师。主要研究方向:低空空域安全监视、雷达目标检测与跟踪、机场安全运行技术。
  • 基金资助:
    国家自然科学基金委员会-中国民航局民航联合研究基金(U1633122);国家重点研发计划(2016YFC0800406)

Joint optimization of detection and tracking with Rao-Blackwellized Monte Carlo data association

CHEN Weishi, YAN Jun, LI Jing   

  1. Airport Research Institute, China Academy of Civil Aviation Science and Technology, Beijing 100028, China
  • Received:2017-04-13 Online:2018-04-20 Published:2018-04-27
  • Supported by:
    Joint Research Foundation of National Natural Science Foundation of China (NSFC) and Civil Aviation Administration of China (CAAC) (U1633122); National Key R&D Program (2016YFC0800406)

摘要: 提出了基于Rao-Blackwellized蒙特卡罗数据关联的雷达目标检测跟踪联合优化算法。Rao-Blackwellization方法将单目标跟踪与数据关联分开处理,将序贯蒙特卡罗方法(粒子滤波)用于数据关联,实现杂波与虚警量测中的多目标跟踪。同时,根据粒子的分布范围确定波门大小。在考虑粒子权重的前提下,利用检测单元与所有粒子的相对位置对检测门限进行修正,提高检测率。将本文算法与已经实现的基于空域特性的杂波抑制算法相结合,分别应用于仿真数据、S波段相参与非相参雷达实测数据。实验结果表明,本文算法能够在粒子数较少的情况下,实现对小弱目标的检测与跟踪。

关键词: 数据关联, 雷达, 目标, 检测, 跟踪

Abstract: A joint optimization algorithm was proposed for radar target detection and tracking with Rao-Blackwellized Monte Carlo data association. Rao-Blackwellization made the separation of single target tracking and data association, where the data association was solved by the sequential Monte Carlo method (particle filtering), leading to the multiple target tracking in the environment of clutter and false alarm measurements. Meanwhile, the size of the wave gate depended on the distribution range of particles. Under the consideration of the particle weights, the detection threshold was modified with the relative position of the detection units to all the particles, improving the detection rate. Finally, combined with the algorithm for clutter suppression with spatial features achieved in the previous research, the proposed algorithm was applied to the simulated data as well as the ground-truth data collected by the S-band incoherent and coherent radars. It is demonstrated that the proposed algorithm can realize the detection and tracking of small targets with relatively small number of particles.

Key words: data association, radar, target, detection, tracking

中图分类号: 


版权所有 © 《北京航空航天大学学报》编辑部
通讯地址:北京市海淀区学院路37号 北京航空航天大学学报编辑部 邮编:100191 E-mail:jbuaa@buaa.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发