北京航空航天大学学报 ›› 2018, Vol. 44 ›› Issue (5): 982-990.doi: 10.13700/j.bh.1001-5965.2017.0312

• 论文 • 上一篇    下一篇

基于自适应强跟踪CQKF的目标跟踪算法

刘畅1, 杨锁昌1, 汪连栋2, 张宽桥1   

  1. 1. 军械工程学院 导弹工程系, 石家庄 050000;
    2. 电子信息系统复杂电磁环境效应国家重点实验室, 洛阳 471003
  • 收稿日期:2017-05-15 出版日期:2018-05-20 发布日期:2018-05-29
  • 通讯作者: 杨锁昌 E-mail:yangsuochang_jx@sina.com
  • 作者简介:刘畅,男,博士研究生。主要研究方向:非线性滤波、目标跟踪;杨锁昌,男,博士,教授,博士生导师。主要研究方向:导弹制导。

Target tracking algorithm based on adaptive strong tracking CQKF

LIU Chang1, YANG Suochang1, WANG Liandong2, ZHANG Kuanqiao1   

  1. 1. Department of Missile Engineering, Ordnance Engineering College, Shijiazhuang 050000, China;
    2. State Key Laboratory of Complex Electromagnetic Environment Effects on Electronics and Information System, Luoyang 471003, China
  • Received:2017-05-15 Online:2018-05-20 Published:2018-05-29

摘要: 针对容积积分卡尔曼滤波(CQKF)受模型不确定性影响较大及需要精确已知噪声统计特性的缺点,提出了一种自适应强跟踪CQKF算法。该算法根据强跟踪滤波原理,引入渐消因子调整状态预测协方差矩阵,强迫残差序列正交,有效抑制了模型不确定性引起的滤波发散。在滤波过程中,利用Sage-Husa时变噪声统计估值器对过程噪声及量测噪声实时估计,提高了算法在未知时变噪声环境下的滤波精度。目标跟踪仿真实验验证了算法的有效性和鲁棒性。

关键词: 目标跟踪, 容积积分卡尔曼滤波(CQKF), 强跟踪滤波, 噪声统计估值器, 自适应滤波

Abstract: As cubature quadrature Kalman filter (CQKF) is easily influenced by uncertainty of state-space model and need to know exactly noise statistics, a new type of adaptive CQKF algorithm with strong tracking behavior is proposed. Based on the theory of strong tracking filter, the new algorithm introduces fading factor to adapt to covariance matrix and reinforces residual sequence to be orthogonal, which effectively suppresses the filtering divergence caused by the model uncertainty. In the process of filtering, processing noise and measurement noise should be estimated online by the Sage-Husa noise statistics estimator, which will improve the filter precision under the circumstance of unknown time-varying noise. Simulations of target tracking demonstrate the efficiency and robustness of the algorithm. Received:2017-05-15; Accepted:2017-06-26; Published online:2017-10-13 14:05 URL:kns.cnki.net/kcms/detail/11.2625.V.20171013.1405.004.html *Corresponding author. E-mail:yangsuochang_jx@sina.com

Key words: target tracking, cubature quadrature Kalman filter (CQKF), strong tracking filter, noise statistics estimators, adaptive filter

中图分类号: 


版权所有 © 《北京航空航天大学学报》编辑部
通讯地址:北京市海淀区学院路37号 北京航空航天大学学报编辑部 邮编:100191 E-mail:jbuaa@buaa.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发