留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多传感器协同跟踪与辐射控制的调度算法

乔成林 段修生 单甘霖

乔成林, 段修生, 单甘霖等 . 多传感器协同跟踪与辐射控制的调度算法[J]. 北京航空航天大学学报, 2018, 44(7): 1472-1480. doi: 10.13700/j.bh.1001-5965.2017.0555
引用本文: 乔成林, 段修生, 单甘霖等 . 多传感器协同跟踪与辐射控制的调度算法[J]. 北京航空航天大学学报, 2018, 44(7): 1472-1480. doi: 10.13700/j.bh.1001-5965.2017.0555
QIAO Chenglin, DUAN Xiusheng, SHAN Ganlinet al. Scheduling algorithm for multi-sensor collaboration tracking and radiation control[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(7): 1472-1480. doi: 10.13700/j.bh.1001-5965.2017.0555(in Chinese)
Citation: QIAO Chenglin, DUAN Xiusheng, SHAN Ganlinet al. Scheduling algorithm for multi-sensor collaboration tracking and radiation control[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(7): 1472-1480. doi: 10.13700/j.bh.1001-5965.2017.0555(in Chinese)

多传感器协同跟踪与辐射控制的调度算法

doi: 10.13700/j.bh.1001-5965.2017.0555
基金项目: 

国防预研基金 012015012600A2203

详细信息
    作者简介:

    乔成林  男, 博士研究生。主要研究方向:传感器管理、信息融合理论与应用

    段修生  男, 博士, 教授, 硕士生导师。主要研究方向:信息融合理论与应用、电子装备故障诊断等

    单甘霖  男, 博士, 教授, 博士生导师。主要研究方向:传感器管理、信息融合理论与应用、防空武器系统仿真与应用等

    通讯作者:

    段修生, E-mail:sjzdxsh@163.com

  • 中图分类号: TP212;V448.13

Scheduling algorithm for multi-sensor collaboration tracking and radiation control

Funds: 

National Defence Pre-research Foundation 012015012600A2203

More Information
  • 摘要:

    为了降低有源传感器在获得目标持续量测时被敌方截获的风险,提出一种多传感器协同跟踪与辐射控制的调度算法。该算法首先采用辐射度影响(ELI)衡量传感器辐射,将目标跟踪与辐射控制过程建立为部分可观马尔可夫决策(POMDP)过程。然后以隐马尔可夫模型(HMM)滤波器更新传感器辐射状态、推导长时辐射风险,以无迹卡尔曼滤波(UKF)更新目标状态、估计跟踪精度。最后考虑跟踪任务需求,构建精度约束下辐射控制的长时调度模型,并将该长时调度问题转化为决策树寻优问题,给出决策树节点次优下界值,采用改进分支定界技术(IB & B)快速求解最优调度序列。仿真结果验证了本文算法的有效性。

     

  • 图 1  有源传感器调度场景

    Figure 1.  Active sensor scheduling scenario

    图 2  决策树示意图(H=3, N=4)

    Figure 2.  An illustrative decision tree (H=3, N=4)

    图 3  不同搜索算法的节点打开占比

    Figure 3.  Percentage of opened node of different search algorithms

    图 4  不同决策步长下的最优累积辐射风险

    Figure 4.  Optimum cumulative radiation risk versus decision step

    图 5  不同阈值下的目标RMSE

    Figure 5.  Target RMSE of different thresholds

    图 6  不同策略下的累积辐射风险和累积ELI值

    Figure 6.  Cumulative radiation risk and cumulative ELI value of different policies

    图 7  不同时间下的累积辐射风险

    Figure 7.  Cumulative radiation risk versus time

    表  1  算法搜索性能对比

    Table  1.   Comparison of search performance among algorithms

    算法 H=2 H=3 H=4 H=5
    节点打开数(占比) 最大存储节点 节点打开数(占比) 最大存储节点 节点打开数(占比) 最大存储节点 节点打开数(占比) 最大存储节点
    ES 20 16 84 64 340 256 1 364 1 024
    UCS 17(85%) 4 69(82%) 16 240(70%) 64 856(63%) 251
    ε-UCS 17(85%) 4 62(74%) 16 177(52%) 64 533(39%) 251
    IB & B 9(45%) 4 19(23%) 12 36(11%) 28 73(5%) 66
    下载: 导出CSV
  • [1] LI Y, KRAKOW L W, CHONG E K P, et al.Approximate stochastic dynamic programming for sensor scheduling to track multiple targets[J].Digital Signal Processing, 2009, 19(6):978-989. doi: 10.1016/j.dsp.2007.05.004
    [2] 刘钦, 刘铮.一种基于Rényi信息增量的机动目标协同跟踪算法[J].控制与决策, 2012, 27(9):1437-1440. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kzyjc201209030

    LIU Q, LIU Z.A method of maneuvering target collaboration tracking based on Rényi information gain[J].Control and Decision, 2012, 27(9):1437-1440(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kzyjc201209030
    [3] 程洪玮, 王博, 安玮.一种基于信息决策树的低轨星座传感器调度算法[J].电子学报, 2010, 38(11):2630-2634. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dianzixb201011030

    CHENG H W, WANG B, AN W.A sensor scheduling method of LEO constellation based on information decision tree[J].Acta Electronica Sinica, 2010, 38(11):2630-2634(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dianzixb201011030
    [4] CHHETRI A S, MORRELL D, PAPANDREOU S A.Nonmyopic sensor scheduling and its efficient implementation for target tracking applications[J].EURASIP Journal on Advances in Signal Processing, 2006(1):1-18. http://cn.bing.com/academic/profile?id=1ebee867e0057291d07b4f18a7c7dc1a&encoded=0&v=paper_preview&mkt=zh-cn
    [5] SUNBERG Z, CHAKRAVORTY S, ERWIN R S.Information space receding horizon control for multisensor tasking problem[J].IEEE Transactions on Cybernetics, 2016, 46(6):1325-1336. doi: 10.1109/TCYB.2015.2445744
    [6] LIU B, JI C L, ZHANG Y Y, et al.Blending sensor scheduling strategy with particle filter to track a smart target[J].Wireless Sensor Network, 2009, 1:300-305. doi: 10.4236/wsn.2009.14037
    [7] 吴巍, 王国宏, 双炜, 等.多机载平台多目标跟踪与辐射控制[J].系统工程与电子技术, 2012, 34(3):495-501. http://www.cqvip.com/QK/95985X/201203/41194934.html

    WU W, WANG G H, SHUANG W, et al.Multi-airborne-platform multi-target tracking and radiation control technology[J].Systems Engineering and Electronics, 2012, 34(3):495-501(in Chinese). http://www.cqvip.com/QK/95985X/201203/41194934.html
    [8] 吴卫华, 江晶, 高岚.机载雷达辅助无源传感器对杂波环境下机动目标跟踪[J].控制与决策, 2015, 30(2):277-282. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kzyjc201502014

    WU W H, JIANG J, GAO L.Tracking maneuvering target in clutter with passive sensor aided by airborne radar[J].Control and Decision, 2015, 30(2):277-282(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kzyjc201502014
    [9] ZHANG Z, SHAN G.UTS-based foresight optimization of sensor scheduling for low interception risk tracking[J].International Journal of Adaptive Control and Signal Processing, 2014, 28(10):921-931. doi: 10.1002/acs.v28.10
    [10] ZHANG Z, SHAN G.Non-myopic sensor scheduling to track multiple reactive targets[J].IET Signal Processing, 2015, 9(1):37-47. doi: 10.1049/iet-spr.2013.0187
    [11] SHE J, WANG F, ZHOU J.A novel sensor selection and power allocation algorithm for multiple-target tracking in an LPI radar network[J].Sensors, 2016, 16(12):2193-2206. doi: 10.3390/s16122193
    [12] KRISHNAMURTHY V.Emission management for low probability intercept sensors in network centric warfare[J].IEEE Transactions on Aerospace and Electronic Systems, 2005, 41(1):133-151. doi: 10.1109/TAES.2005.1413752
    [13] 单甘霖, 张子宁.面向目标跟踪的单平台主被动传感器长期调度[J].系统工程与电子技术, 2014, 36(3):458-463. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xtgcydzjs201403009

    SHAN G L, ZHANG Z N.Non-myopic sensor scheduling in a single platform for target tracking[J].Systems Engineering and Electronics, 2014, 36(3):458-463(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xtgcydzjs201403009
    [14] SHAN G, ZHANG Z.Non-myopic sensor scheduling for low radiation risk tracking using mixed POMDP[J].Transactions of the Institute of Measurement and Control, 2017, 39(2):230-243. doi: 10.1177/0142331215604211
    [15] KALANDROS M.Covariance control for multisensor systems[J].IEEE Transactions on Aerospace and Electronic Systems, 2002, 38(4):1138-1157. doi: 10.1109/TAES.2002.1145739
    [16] SONG H, XIAO M, XIAO J, et al.A POMDP approach for scheduling the usage of airborne electronic countermeasures in air operations[J].Aerospace Science and Technology, 2016, 48:86-93. doi: 10.1016/j.ast.2015.11.001
    [17] ROY A, MITRA D.Unscented-Kalman-filter-based multitarget tracking algorithms for airborne surveillance application[J].Journal of Guidance, Control, and Dynamics, 2016, 39(9):1949-1966. doi: 10.2514/1.G001587
    [18] HUBER M F.Optimal pruning for multi-step sensor scheduling[J].IEEE Transactions on Automatic Control, 2012, 57(5):1338-1343. doi: 10.1109/TAC.2011.2175070
    [19] 宋海方, 肖明清, 陈游, 等.基于MDP的战机对抗导弹措施优化算法[J].北京航空航天大学学报, 2017, 43(5):942-950. http://bhxb.buaa.edu.cn/CN/abstract/abstract14298.shtml

    SONG H F, XIAO M Q, CHEN Y, et al.MDP method for optimization of fighter aircraft's countermeasures against missile[J].Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(5):942-950(in Chinese). http://bhxb.buaa.edu.cn/CN/abstract/abstract14298.shtml
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  779
  • HTML全文浏览量:  71
  • PDF下载量:  494
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-08-31
  • 录用日期:  2017-11-23
  • 网络出版日期:  2018-07-20

目录

    /

    返回文章
    返回
    常见问答