北京航空航天大学学报 ›› 2018, Vol. 44 ›› Issue (9): 1998-2003.doi: 10.13700/j.bh.1001-5965.2018.0181

• 论文 • 上一篇    下一篇

基于改进相关向量机的锂电池寿命预测方法

王春雷1, 赵琦2, 秦孝丽2, 冯文全2   

  1. 1. 北京科技大学 计算机与通信工程学院, 北京 100083;
    2. 北京航空航天大学 电子信息工程学院, 北京 100083
  • 收稿日期:2018-04-04 出版日期:2018-09-20 发布日期:2018-09-21
  • 通讯作者: 赵琦.E-mail:zhaoqi@buaa.edu.cn E-mail:zhaoqi@buaa.edu.cn
  • 作者简介:王春雷 男,硕士研究生。主要研究方向:机器学习;赵琦 女,博士,副教授,硕士生导师。主要研究方向:通信与信息系统、航天器健康管理等;秦孝丽 女,硕士研究生。主要研究方向:故障诊断与预测;冯文全 男,博士,教授,博士生导师。主要研究方向:卫星综合测试与仿真、遥测遥控、卫星导航。

Life prediction method of lithium battery based on improved relevance vector machine

WANG Chunlei1, ZHAO Qi2, QIN Xiaoli2, FENG Wenquan2   

  1. 1. School of Computer and Communication Engineering, University of Science & Technology Beijing, Beijing 100083, China;
    2. School of Electronic and Information Engineering, Beijing University of Aeronautics and Astronautics, Beijing 100083, China
  • Received:2018-04-04 Online:2018-09-20 Published:2018-09-21

摘要: 锂电池具有轻便安全、循环寿命长和安全性能好等优点,作为一个被广泛应用的储能电源,锂电池健康管理和寿命预测是国内外研究的热点。建立锂电池寿命预测方法和模型,基于实验历史数据,建立电池衰减模型从而对整个电池的工作状态进行评估,及时对设备进行维护和替换,以确保电池工作的稳定。对相关向量机(RVM)的核函数进行了组合改进,优化了RVM的性能,减小了锂电池寿命预测的偏差度,提高了预测精度。

关键词: 锂电池, 剩余寿命, 预测, 相关向量机(RVM), MATLAB

Abstract: Lithium batteries have the advantages of light weight and safety, long cycle life, and good safety performance. As a widely-used energy storage power supply, lithium battery health management and life prediction are hot topics both at home and abroad. Lithium battery life assessment methods and prediction models were established. Battery decay models were established based on experimental historical data to evaluate the working status of the entire battery, and the equipment was maintained and replaced in time to ensure stable battery operation. In this paper, the kernel function of the relevance vector machine (RVM) was mainly improved, the performance of the relevance vector machine was optimized, the lithium battery life prediction bias was reduced, and the prediction accuracy was improved.

Key words: lithium battery, remaining useful life, prediction, relevance vector machine (RVM), MATLAB

中图分类号: 


版权所有 © 《北京航空航天大学学报》编辑部
通讯地址:北京市海淀区学院路37号 北京航空航天大学学报编辑部 邮编:100191 E-mail:jbuaa@buaa.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发