北京航空航天大学学报 ›› 2019, Vol. 45 ›› Issue (2): 252-258.doi: 10.13700/j.bh.1001-5965.2018.0302

• 论文 • 上一篇    下一篇

高速运载器燃油热管理系统优化

庞丽萍1, 邹凌宇1, 阿嵘2, 杨晓东3, 范俊4   

  1. 1. 北京航空航天大学 航空科学与工程学院, 北京 100083;
    2. 中国空间技术研究院载人航天总体部, 北京 100094;
    3. 北京机电工程研究所, 北京 10007;
    4. 陆军航空兵研究所, 北京 101121
  • 收稿日期:2018-05-28 出版日期:2019-02-20 发布日期:2019-03-04
  • 通讯作者: 庞丽萍 E-mail:pangliping@buaa.edu.cn
  • 作者简介:庞丽萍女,博士,教授。主要研究方向:飞行器环境控制;邹凌宇男,硕士研究生。主要研究方向:飞行器环境控制。
  • 基金资助:
    国家重点研发计划(2017YFB1201100)

Optimization of fuel heat management system for high-speed aircraft

PANG Liping1, ZOU Lingyu1, A Rong2, YANG Xiaodong3, FAN Jun4   

  1. 1. School of Aviation Science and Engineering, Beihang University, Beijing 100083, China;
    2. Institute of Manned Space System Engineering, China Academy of Space Technology, Beijing 100094, China;
    3. Beijing Electro-Mechanical Engineering Institute, Beijing 10007;
    4. Army Aviation Research Institute, Beijing 101121, China
  • Received:2018-05-28 Online:2019-02-20 Published:2019-03-04
  • Supported by:
    National Key R & D Program of China (2017YFB1201100)

摘要: 燃油热管理系统设计随着运载器多电化与机载高能电子设备的发展已经得到高度重视,其中燃油的热承载能力是最关键因素。针对喷气推进式高速运载器,提出了一种大范围、多任务的燃油热管理系统多目标优化配置方法,其以热沉利用率最高和燃油质量代偿损失最小为目标函数,以循环回路的燃油最大质量流量、冷却水携带量和机载热负荷发热量为优化变量,采用改进的遗传算法NSGA-Ⅱ,在不同飞行任务规划下进行双目标优化设计,所获得的目标函数Pareto最优解集,满足预期的燃油热管理系统模式选择原则,且通过分析优化变量与优化目标间的相关性,可以量化燃油热管理系统优化配置准则与可达到的最小燃油质量代偿损失,可应用于支持多热沉重构的机载高效燃油热管理系统。

关键词: 高速运载器, 热管理系统, 燃油热沉, 飞行时长, 消耗性冷却剂

Abstract: With the rapid development of multi-electrification of aircraft and airborne high-energy electronic equipment, the design of fuel heat management system has been paid great attention to. The most critical factor is the thermal load capacity of fuel. For jet propulsion high-speed aircraft,this paper presents a multi-objective optimal allocation method for a large-scale and multi-task fuel heat management system. The thermal carrying capacity of fuel decreases with the increase of flight time, due to the dual effect of airborne thermal load and aerodynamic heating. In this paper, the improved genetic algorithm NSGA-Ⅱ is used to optimize the design of two targets under different flight mission planning. The objective function is heat sink efficiency and fuel compensation loss. The optimization variables are the maximum flow rate of the fuel cycle, the consumption of coolant and the heat load on board. The objective function Pareto optimal solution set is obtained to meet the expected model selection principle of the fuel heat management system. By analyzing the correlation between the optimized variable and the optimization target, the optimization configuration criterion and the minimum fuel compensation loss can be quantified, and the airborne efficient heat management system supporting the multiple heat sink reconstruction is designed.

Key words: high-speed aircraft, heat management system, fuel heat sink, flight time length, expendable coolant

中图分类号: 


版权所有 © 《北京航空航天大学学报》编辑部
通讯地址:北京市海淀区学院路37号 北京航空航天大学学报编辑部 邮编:100191 E-mail:jbuaa@buaa.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发