留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于能量观点的混合层流优化设计

史亚云 郭斌 刘倩 白俊强 杨体浩 卢磊

史亚云, 郭斌, 刘倩, 等 . 基于能量观点的混合层流优化设计[J]. 北京航空航天大学学报, 2019, 45(6): 1162-1174. doi: 10.13700/j.bh.1001-5965.2018.0592
引用本文: 史亚云, 郭斌, 刘倩, 等 . 基于能量观点的混合层流优化设计[J]. 北京航空航天大学学报, 2019, 45(6): 1162-1174. doi: 10.13700/j.bh.1001-5965.2018.0592
SHI Yayun, GUO Bin, LIU Qian, et al. Hybrid laminar flow optimization design from energy view[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(6): 1162-1174. doi: 10.13700/j.bh.1001-5965.2018.0592(in Chinese)
Citation: SHI Yayun, GUO Bin, LIU Qian, et al. Hybrid laminar flow optimization design from energy view[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(6): 1162-1174. doi: 10.13700/j.bh.1001-5965.2018.0592(in Chinese)

基于能量观点的混合层流优化设计

doi: 10.13700/j.bh.1001-5965.2018.0592
基金项目: 

国家“973”计划 2014CB744804

详细信息
    作者简介:

    史亚云  女, 博士研究生。主要研究方向:转捩预测方法、混合层流技术、优化方法

    白俊强  男, 教授。主要研究方向:飞行器设计、流体力学、多学科优化设计

    杨体浩  男, 助理研究员。主要研究方向:飞行器设计、流体力学、多学科优化设计

    通讯作者:

    白俊强, E-mail: junqiang@nwpu.edu.cn

  • 中图分类号: V224

Hybrid laminar flow optimization design from energy view

Funds: 

National Basic Research Program of China 2014CB744804

More Information
  • 摘要:

    为了合理地在混合层流设计中减小阻力,降低能量消耗,利用吸气控制功率消耗与阻力、吸气速度的关系式,建立了考虑以吸气功率最小为优化目标的优化设计方法。该优化设计方法采用了自由变形(FFD)参数化方法,紧支型的径向基函数(RBF)动网格技术,改进的微分进化(DE)算法,以及耦合基于eN转捩预测的RANS流场高精度求解器。针对25°后掠角的跨声速无限展长后掠翼,进行了以阻力最小为优化目标的均匀吸气和以功率消耗最小为优化目标的分布式吸气的混合层流优化设计。优化结果表明,基于能量观点的优化结果在雷诺数10×106下可以达到均匀吸气的阻力收益,相比初始构型,阻力降低了29.1%,上下翼面转捩位置分别推迟了18%和15%弦长,功耗降低了1.7%;而在雷诺数20×106状态下,相比初始构型,阻力减小了41.3%,比均匀吸气阻力优化结果提高了4.5%,上下翼面转捩位置分别推迟了52%和14%弦长,功耗降低了8.14%。优化结果表明,建立的基于能量观点的混合层流优化方法是可行的。

     

  • 图 1  转捩计算流程

    Figure 1.  Procedure of transition calculation

    图 2  NLF(2)-0415翼型

    Figure 2.  NLF(2)-0415 airfoil

    图 3  NLF(2)-0415无限展长后掠翼上翼面实验与数值模拟压力系数分布对比

    Figure 3.  Comparison of pressure coefficient distribution on upper wing surface of NLF(2)-0415 infinite spanwise backswept wing between experiment and simulation

    图 4  NLF(2)-0415构型上翼面的转捩位置随雷诺数的变化

    Figure 4.  Variation of transition location with Reynolds number for upper wing surface of NLF(2)-0415 configuration

    图 5  跨声速层流翼型示意图

    Figure 5.  Schematic diagram of transonic laminar airfoil

    图 6  跨声速层流翼型的功率消耗随转捩位置的变化

    Figure 6.  Variation of power consumption with transition location for a transonic laminar airfoil

    图 7  初始构型示意图

    Figure 7.  Sketch map of original configuration

    图 8  FFD控制框示意图

    Figure 8.  Sketch map of FFD control box

    图 9  初始构型在Re=10×106状态下上下翼面的摩擦阻力云图

    Figure 9.  Upper and lower wing surface frictional drag contour of original configuration at Re=10×106

    图 10  初始构型和均匀吸气、分布式吸气优化结果在Re=10×106状态下的优化剖面翼型以及压力分布对比

    Figure 10.  Comparison of optimized airfoil profile and pressure distribution among original configuration, uniform suction and distributed suction at Re=10×106

    图 11  优化构型在Re=10×106状态下上下翼面的摩擦阻力云图

    Figure 11.  Upper and lower wing surface frictional drag contour of optimized configuration at Re=10×106

    图 12  均匀吸气和分布式吸气的优化结果对比(Re=10×106)

    Figure 12.  Comparison of optimization results between uniform suction and distributed suction (Re=10×106)

    图 13  均匀吸气和分布式吸气放大因子扰动曲线的优化结果对比(Re=10×106)

    Figure 13.  Comparison of amplification factor perturbation curve optimization results between uniform suction and distributed suction (Re=10×106)

    图 14  初始构型在Re=20×106状态下上下翼面的摩擦阻力云图

    Figure 14.  Upper and lower wing surface frictional drag contour of original configuration at Re=20×106

    图 15  均匀吸气和分布式吸气优化结果在Re=20×106状态下的上下翼面的摩擦阻力云图

    Figure 15.  Upper and lower wing surface frictional drag contour optimization results of uniform suction and distributed suction at Re=20×106

    图 16  初始构型和均匀吸气、分布式吸气在Re= 20×106状态下的优化剖面翼型以及压力分布对比

    Figure 16.  Comparison of optimized airfoil profile and pressure distribution among original configuration, uniform suction and distributed suction at Re=20×106

    图 17  均匀吸气和分布式吸气对应的放大因子扰动曲线对比(Re=20×106)

    Figure 17.  Comparison of amplification factor perturbation amplification curve between uniform suction and distributed suction (Re=20×106)

    图 18  均匀吸气和分布式吸气沿流向的吸气系数对比(Re=20×106)

    Figure 18.  Comparison of streamwise suction coefficient between uniform suction and distributed suction (Re=20×106)

    表  1  NLF(2)-0415无限展长后掠翼实验与数值模拟状态

    Table  1.   Experimental and simulation conditions for NLF(2)-0415 infinite spanwise backswept wing

    状态 雷诺数/106
    1 1.92
    2 2.19
    3 2.37
    4 2.73
    5 3.27
    6 3.73
    下载: 导出CSV

    表  2  跨声速翼型吸气消耗功率计算结果

    Table  2.   Calculation results of suction power consumption for a transonic airfoil

    消耗功率 数值/kW 占比/%
    Wwakedrag 12.04 84.3
    Wthrust -0.42 -2.9
    Wpump 2.67 18.7
    WT 14.29 100
    下载: 导出CSV

    表  3  设计工况

    Table  3.   Design conditions

    参数 数值
    后掠角/(°) 25
    马赫数 0.78
    相对厚度 0.125
    升力系数 0.59
    雷诺数/106 10, 20
    下载: 导出CSV

    表  4  Re=10×106下力系数优化结果对比

    Table  4.   Comparison of force coefficient optimization results at Re=10×106

    参数 初始 均匀吸气 分布式吸气
    CD/104 65.9 46.7 46.7
    CDv/104 37.1 27.0 27.0
    CDp/104 28.8 19.7 19.7
    Cm -0.372 -0.373 -0.373
    L/D 89.53 126.34 126.34
    下载: 导出CSV

    表  5  Re=10×106下功率消耗的优化结果对比

    Table  5.   Comparison of optimization results for power consumption at Re=10×106

    kW
    消耗功率 均匀吸气 分布式吸气
    Wwakedrag 22.88 22.88
    Wthrust -0.442 -0.197
    Wpump 0.931 0.250
    WT 23.327 22.935
    下载: 导出CSV

    表  6  Re=20×106下力系数优化结果对比

    Table  6.   Comparison of force coefficient optimization results at Re=20×106

    参数 初始 均匀吸气 分布式吸气
    CD/104 89.6 56.6 52.6
    CDv/104 47.3 36.0 34.2
    CDp/104 42.3 20.6 18.4
    Cm -0.360 -0.377 -0.380
    L/D 65.85 104.34 112.17
    下载: 导出CSV

    表  7  Re=20×106下功率消耗的优化结果对比

    Table  7.   Comparison of optimized results for power consumption at Re=20×106

    kW
    消耗功率 均匀吸气 分布式吸气
    Wwakedrag 55.47 51.55
    Wthrust -0.883 -0.485
    Wpump 1.863 0.790
    WT 56.447 51.852
    下载: 导出CSV
  • [1] CAMPBELL R L, MICHELLE N L.Natural laminar flow design for wings with moderate sweep: AIAA.2016-4326[R].Reston: AIAA, 2016.
    [2] SCHRAUF G.Status and perspectives of laminar flow[J].The Aeronautical Journal, 2005, 109(1102):639-644. doi: 10.1017/S000192400000097X
    [3] SCHRAUF G.The need of large-scale HLFC testing in europe[EB/OL].(2013)[2018-10-17].http://www.aflonext.eu/files/pdf/schrauf_2013_HLFC_research-needs_v2.pdf.
    [4] BECK N.Drag reduction by laminar flow control[J].Energies, 2018, 11(1):252. doi: 10.3390/en11010252
    [5] 朱自强, 鞠胜军, 吴宗成.层流流动主/被动控制技术[J].航空学报, 2016, 37(7):2065-2090. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hkxb201607003

    ZHU Z Q, JU S J, WU Z C.Laminar flow active/passive control technology[J].Acta Aeronautica et Astronautica Sinica, 2016, 37(7):2065-2090(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hkxb201607003
    [6] SHI Y Y, BAI J Q, HUA J, et al.Numerical analysis and optimization of boundary layer suction on airfoils[J].Chinese Journal of Aeronautics, 2015, 28(2), 357-367. doi: 10.1016/j.cja.2015.02.011
    [7] KRISHNAN K S G, BERTRAM O, SEIBEL O.Review of hybrid laminar flow control systems[J].Progress in Aerospace Sciences, 2017, 93:24-52. doi: 10.1016/j.paerosci.2017.05.005
    [8] 王菲, 王强, 郭辉, 等.升华法的后掠翼混合层流控制研究[J].实验流体力学, 2010, 24(3):54-58. doi: 10.3969/j.issn.1672-9897.2010.03.011

    WANG F, WANG Q, GUO H, et al.Investigation of HLFC on swept wing based on sublimation technique[J].Journal of Experiments in Fluid Mechanics, 2010, 24(3):54-58(in Chinese). doi: 10.3969/j.issn.1672-9897.2010.03.011
    [9] RISSE K, STUMPF E.Conceptual aircraft design with hybrid laminar flow control[J].CEAS Aeronautical Journal, 2014, 5(3):333-343. doi: 10.1007/s13272-014-0111-6
    [10] 杨体浩, 白俊强, 史亚云, 等.考虑吸气分布影响的HLFC机翼优化设计[J].航空学报, 2017, 38(12):121158. http://d.old.wanfangdata.com.cn/Periodical/hkxb201712001

    YANG T H, BAI J Q, SHI Y Y, et al.Optimization design for HLFC wings considering influence of suction distribution[J].Acta Aeronautica et Astronautica Sinica, 2017, 38(12):121158(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/hkxb201712001
    [11] 杨一雄, 杨体浩, 白俊强, 等.后掠翼优化设计的若干问题[J].航空学报, 2018, 39(1):121448. http://d.old.wanfangdata.com.cn/Periodical/hkxb201801013

    YANG Y X, YANG T H, BAI J Q, et al.Problems in optimization design of HLFC sweep wing[J].Acta Aeronautica et Astronautica Sinica, 2018, 39(1):121448(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/hkxb201801013
    [12] XU J K, FU Z Y, BAI J Q.Study of boundary layer transition on supercritical natural laminar flow wing at high Reynolds number through wind tunnel experiment[J].Aerospace Science and Technology, 2018, 80:221-231. doi: 10.1016/j.ast.2018.07.007
    [13] SHI Y Y, GROSS R, MADER C A, et al.Transition prediction in a RANS solver based on linear stability theory for complex three-dimensional configurations AIAA-2018-0819[R].Reston: AIAA, 2018.
    [14] CEBECI T.Stability and yransition:Theory and application[M].Berlin:Springer, 2004.
    [15] BROADHURST M S, SHERWIN S J.The parabolised stability equations for 3D-flows:Implementation and numerical stability[J].Applied Numerical Mathematics, 2008, 58(7):1017-1029. doi: 10.1016/j.apnum.2007.04.016
    [16] JUNIPER M P, HANIFI A, THEOFILIS V.Modal stability theorylecture notes from the flow-nordita summer school on advanced instability methods for complex flows[J].Applied Mechanics Reviews, 2014, 66(2):024804. doi: 10.1115/1.4026604
    [17] SENGUPTA T K, CHATURVEDI V, KUMAR P, et al.Computation of leading edge contamination[J].Computers & Fluids, 2004, 33(7):927-951. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=2edfe0bfe486f7131fb93774b0e7b4f0
    [18] SCHRAUF G, PERRAUD J, VITIELLO D, et al.Comparison of boundary-layer transition predictions using flight test data[J].Journal of Aircraft, 1998, 35(6):891-897. doi: 10.2514/2.2409
    [19] LAWSON S, CIARELLA A, WONG P W.Development of experimental techniques for hybrid laminar flow control in the ARA transonic wind tunnel[C]//2018 Applied Aerodynamics Conference, 2018.
    [20] XU J K, BAI J Q, QIAO L, et al.Fully local formulation of a transition closure model for transitional flow simulations[J].AIAA Journal, 2016, 54(10):3015-3023. doi: 10.2514/1.J054808
    [21] RIOUAL J L, NALSON P A, HACKENBERG P, et al.Optimum drag balance for boundary-layer suction[J].Journal of Aircraft, 1996, 33(2):435-438. doi: 10.2514/3.46956
    [22] PRALITS J O.Optimal design of natural and hybrid laminar flow control on wings[D].Stockholm: Royal Institute of Technology, 2003.
    [23] 陈颂, 白俊强, 孙智伟, 等.基于DFFD技术的翼型气动优化设计[J].航空学报, 2014, 35(3):695-705. http://d.old.wanfangdata.com.cn/Periodical/hkxb201403010

    CHEN S, BAI J Q, SUN Z W, et al.Aerodynamjc optimization design of airfoil using DFFD technique[J].Acta Aeronautica et Astronautica Sinica, 2014, 35(3):695-705(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/hkxb201403010
    [24] 康忠良, 闫超.适用于混合网格的约束最小二乘重构方法[J].航空学报, 2012, 33(9):1598-1605. http://d.old.wanfangdata.com.cn/Periodical/hkxb201209005

    KANG Z L, YAN C.Constrainedleast-squares reconstruction method for mixed grids[J].Acta Aeronautica et Astronautica Sinica, 2012, 33(9):1598-1605(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/hkxb201209005
    [25] 唐得志, 王道波, 王建宏, 等.直接加权优化辨识中未知权重值的迭代选取[J].系统工程与电子技术, 2010, 35(11):2376-2383. http://d.old.wanfangdata.com.cn/Periodical/xtgcydzjs201311024

    TANG Z D, WANG D P, WANG J H, et al.Iterative selection of unknown weights in direct weight optimization identification[J].Systems Engineering and Electronics, 2010, 35(7):2376-2383(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/xtgcydzjs201311024
    [26] 杨体浩, 白俊强, 王丹, 等.考虑发动机干扰的尾吊布局后体气动优化设计[J].航空学报, 2014, 35(7):1836-1844. http://d.old.wanfangdata.com.cn/Periodical/hkxb201407007

    YANG T H, BAI J Q, WANG D, et al.Aerodynamic optimization design for after-body of tail-mounted engine layout considering interference of engines[J].Acta Aeronautica et Astronautica Sinica, 2014, 35(7):1836-1844(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/hkxb201407007
    [27] 邓凯文, 陈海昕.基于差分进化和RBF响应面的混合优化算法[J].力学学报, 2017, 49(2):441-455. http://d.old.wanfangdata.com.cn/Periodical/lxxb201702020

    DENG K W, CHEN H X.Hybrid optimization algorithm based on differentical evolution and RBF response surface[J].Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(2):441-455(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/lxxb201702020
  • 加载中
图(18) / 表(7)
计量
  • 文章访问数:  589
  • HTML全文浏览量:  41
  • PDF下载量:  517
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-10-17
  • 录用日期:  2019-01-11
  • 网络出版日期:  2019-06-20

目录

    /

    返回文章
    返回
    常见问答