留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于ADMM算法的航空发动机模型预测控制

单睿斌 李秋红 何凤林 冯海龙 管庭筠

单睿斌, 李秋红, 何凤林, 等 . 基于ADMM算法的航空发动机模型预测控制[J]. 北京航空航天大学学报, 2019, 45(6): 1240-1247. doi: 10.13700/j.bh.1001-5965.2018.0599
引用本文: 单睿斌, 李秋红, 何凤林, 等 . 基于ADMM算法的航空发动机模型预测控制[J]. 北京航空航天大学学报, 2019, 45(6): 1240-1247. doi: 10.13700/j.bh.1001-5965.2018.0599
SHAN Ruibin, LI Qiuhong, HE Fenglin, et al. Model predictive control based on ADMM for aero-engine[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(6): 1240-1247. doi: 10.13700/j.bh.1001-5965.2018.0599(in Chinese)
Citation: SHAN Ruibin, LI Qiuhong, HE Fenglin, et al. Model predictive control based on ADMM for aero-engine[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(6): 1240-1247. doi: 10.13700/j.bh.1001-5965.2018.0599(in Chinese)

基于ADMM算法的航空发动机模型预测控制

doi: 10.13700/j.bh.1001-5965.2018.0599
详细信息
    作者简介:

    单睿斌  男, 硕士研究生。主要研究方向:航空发动机控制

    李秋红  女, 博士, 副教授。主要研究方向:航空发动机建模、控制与故障诊断

    通讯作者:

    李秋红, E-mail: lqh203@nuaa.edu.cn

  • 中图分类号: V233.7

Model predictive control based on ADMM for aero-engine

More Information
  • 摘要:

    为了提升航空发动机非线性模型预测控制(MPC)的实时性,将交替方向乘子法(ADMM)应用于模型预测控制的滚动优化中。基于状态空间模型构造预测方程,通过引入辅助变量和对偶变量,将二次型性能指标和发动机约束改写为适合ADMM算法求解的形式。在航空发动机部件级模型上开展的仿真结果表明,基于ADMM算法的单变量模型预测能够实现对指令信号的高性能跟踪和约束的有效管理。相比于内点法(IPM),ADMM算法在滚动优化过程中,在不同控制指令下,均具有更高的实时性,且在预测时域增加的情况下,计算耗时增加更少,验证了其在模型预测控制中应用的有效性。

     

  • 图 1  航空发动机MPC系统结构

    Figure 1.  Aircraft engine MPC system structure

    图 2  基于ADMM算法的航空发动机MPC响应

    Figure 2.  Response of aircraft engine MPC based on ADMM

    图 3  T6触及限制下MPC仿真

    Figure 3.  MPC simulation with T6 hitting limit

    图 4  控制序列优化所需平均时间与预测时域的关系

    Figure 4.  Average time consumption for control sequence optimization vs predictive horizon

    表  1  仿真参数

    Table  1.   Simulation parameters

    编号 ΔNh np
    1 0.03 2
    2 0.08 2
    3 0.15 2
    4 0.18 2
    5 0.18 4
    6 0.18 6
    7 0.18 8
    8 0.18 10
    9 0.18 12
    10 0.18 14
    下载: 导出CSV

    表  2  两种算法完成一次控制序列优化所需时间对比

    Table  2.   Time consumption comparison of two methods in finishing one-time control sequence optimization

    编号 所需时间/ms
    IPM ADMM
    1 10.67 3.67
    2 10.57 3.80
    3 10.10 3.60
    4 11.97 3.50
    5 25.87 5.00
    6 41.33 6.80
    7 76.50 8.20
    8 108.83 10.53
    9 167.00 14.13
    10 224.60 15.53
    下载: 导出CSV
  • [1] BRUNELL B J, BITMEAD R R, CONNOLLY A J.Nonlinear model predictive control of an aircraft gas turbine engine[C]//41st IEEE Conference on Decision and Control.Piscataway, NJ: IEEE Press, 2003, 4: 4649-4651. https://www.researchgate.net/publication/224740087_Nonlinear_model_predictive_control_of_an_aircraft_gas_turbine_engine
    [2] BRUNELL B J, VIASSOLO D E, PRASANTH R.Model adaptation and nonlinear model predictive control of an aircraft engine[C]//ASME Turbo Expo 2004: Power for Land, Sea, and Air, 2004: 673-682.
    [3] BRUNELL B J, MATHEWS H K, KUMAR A.Adaptive model-based control systems and methods for controlling a gas turbine: US6823675[P].2004-11-30.
    [4] RICHTER H, SINGARAJU A V, LITT J S.Multiplexed predictive control of a large commercial turbofan engine[J].Journal of Guidance, Control, and Dynamics, 2008, 31(2):273-281. doi: 10.2514/1.30591
    [5] VROEMEN B G, VAN ESSEN H A, VAN STEENHOVEN A A, et al.Nonlinear model predictive control of a laboratory gas turbine installation[J].Journal of Engineering for Gas Turbines and Power, 1999, 121(4):629-634. doi: 10.1115/1.2818518
    [6] 杜宪.滑模与预测控制在航空发动机限制管理中应用研究[D].西安: 西北工业大学, 2016. http://cdmd.cnki.com.cn/Article/CDMD-10699-1018811321.htm

    DU X.Application of sliding mode control and model predictive control to limit management for aero-engines[D].Xi'an: Northwestern Polytechnical University, 2016(in Chinese). http://cdmd.cnki.com.cn/Article/CDMD-10699-1018811321.htm
    [7] LAU M S K, YUE S P, LING K V, et al.A comparison of interior point and active set methods for FPGA implementation of model predictive control[C]//European Control Conference.Piscataway, NJ: IEEE Press, 2009: 156-161. https://www.researchgate.net/publication/265399430_A_Comparison_of_Interior_Point_and_Active_Set_Methods_for_FPGA_Implementation_of_Model_Predictive_Control
    [8] SHAHZAD A, KERRIGAN E C, CONSTANTINIDES G A.A warm-start interior-point method for predictive control[C]//UKACC International Conference on Control.London: IET, 2010: 949-954. https://www.researchgate.net/publication/261390258_A_warm-start_interior-point_method_for_predictive_control
    [9] ECKSTEIN J.Splitting methods for monotone operators with applications to parallel optimization[D].Cambridge: Massachusetts Institute of Technology, 1989.
    [10] BOYD S, PARIKH N, CHU E, et al.Distributed optimization and statistical learning via the alternating direction method of multipliers[J].Foundations and Trends in Machine Learning, 2011, 3(1):1-122. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=3e990a176868f2d25550830e52a96572
    [11] ECKSTEIN J, WANG Y.Understanding the convergence of the alternating direction method of multipliers:Theoretical and computational perspectives[J].Pacific Journal of Optimization, 2015, 11(4):619-644.
    [12] GHADIMI E, TEIXEIRA A, SHAMES I, et al.Optimal parameter selection for the alternating direction method of multipliers(ADMM):Quadratic problems[J].IEEE Transactions on Automatic Control, 2015, 60(3):644-658. doi: 10.1109/TAC.2014.2354892
    [13] 王曦, 党伟, 李志鹏, 等.1种N-dot过渡态PI控制律的设计方法[J].航空发动机, 2015, 41(6):1-5. http://d.old.wanfangdata.com.cn/Periodical/hkfdj201506001

    WANG X, DANG W, LI Z P, et al.A design method of N-dot transient state PI control laws[J].Aeroengine, 2015, 41(6):1-5(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/hkfdj201506001
    [14] JAW L C, MATTINGLY J D.Aircraft engine controls:Design, system analysis, and health monitoring[M].Reston:AIAA, 2009:119-141.
    [15] RICHTER H.A multi-regulator sliding mode control strategy for output-constrained systems[J].Automatica, 2011, 47(10):2251-2259. doi: 10.1016/j.automatica.2011.08.003
    [16] RICHTER H, LITT J.A novel controller for gas turbine engines with aggressive limit management[C]//47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit.Reston: AIAA, 2011: 1-17. https://www.researchgate.net/publication/268479381_A_Novel_Controller_for_Gas_Turbine_Engines_with_Aggressive_Limit_Management
    [17] 杜宪, 郭迎清, 孙浩, 等.基于滑模控制的航空发动机多变量约束管理[J].航空学报, 2016, 37(12):3657-3667. http://d.old.wanfangdata.com.cn/Periodical/hkxb201612009

    DU X, GUO Y Q, SUN H, et al.Sliding mode control based multivariable limit management for aircraft engine[J].Acta Aeronautic et Astronautica Sinica, 2016, 37(12):3657-3667(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/hkxb201612009
    [18] RICHTER H.Multiple sliding modes with override logic:Limit management in aircraft engine controls[J].Journal of Guidance, Control, and Dynamics, 2015, 35(4):1132-1142. http://cn.bing.com/academic/profile?id=69cd2a22268f067a3be913a5b4fbe276&encoded=0&v=paper_preview&mkt=zh-cn
    [19] BERTSEKAS D P.Convex optimization algorithms[M].Nushua:Athena Scientific, 2016:280-285.
    [20] BOLEY D.Local linear convergence of the alternating direction method of multipliers on quadratic or linear programs[J].SIAM Journal on Optimization, 2013, 23(4):2183-2207. doi: 10.1137/120878951
    [21] 赵辉.基于平衡流形展开模型的航空发动机非线性控制方法研究[D].哈尔滨: 哈尔滨工业大学, 2011. http://cdmd.cnki.com.cn/Article/CDMD-10213-1012000357.htm

    ZHAO H.Research on nonlinear control for aeroengines based on equlibrium manifold expansion model[D].Harbin: Harbin Institute of Technology, 2011(in Chinese). http://cdmd.cnki.com.cn/Article/CDMD-10213-1012000357.htm
    [22] NOCEDAL J, WRIGHT J.Numerical optimization[M].Berlin:Springer, 2006:481-485.
  • 加载中
图(4) / 表(2)
计量
  • 文章访问数:  900
  • HTML全文浏览量:  85
  • PDF下载量:  594
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-10-19
  • 录用日期:  2018-11-08
  • 网络出版日期:  2019-06-20

目录

    /

    返回文章
    返回
    常见问答