[1] LECUN Y, BOTTOU L,BENGIO Y,et al.Gradient-based learning applied to document recognition[J].Proceedings of the IEEE,1998,86(11):2278-2324.
[2] RUSSAKOVSKY O, DENG J,SU H,et al.ImageNet large scale visual recognition challenge[J].International Journal of Computer Vision,2014,115(3):211-252.
[3] KRIZHEVSKY A,SUTSKEVER I,HINTON G.Imagenet classification with deep convolutional neural networks[C]//International Conference on Neural Information Processing Systems.New York:Curran Associates Inc.,2012:1097-1105.
[4] SIMONYAN K,ZISSERMAN A.Very deep convolutional networks for large-scale image recognition[C]//International Conference on Learning Representations,2015:1-14.
[5] SZEGEDY C,LIU W,JIA Y.Going deeper with convolutions[C]//IEEE Conference on Computer Vision and Pattern Recognition.Piscataway,NJ:IEEE Press,2015:1-9.
[6] HE K M,ZHANG X Y,REN S Q,et al.Deep residual learning for image recognition[C]//IEEE Conference on Computer Vision and Pattern Recognition.Piscataway,NJ:IEEE Press,2016:770-778.
[7] SZEGEDY C,VINCENT V,IOFFE S.Rethinking the inception architecture for computer vision[C]//IEEE Conference on Computer Vision and Pattern Recognition.Piscataway,NJ:IEEE Press,2016:2818-2826.
[8] GIRSHICK R,DONAHUE J,DARRELL T,et al.Rich feature hierarchies for accurate object detection and semantic segmentation[C]//IEEE Conference on Computer Vision and Pattern Recognition.Piscataway,NJ:IEEE Press,2014:580-587.
[9] WANG N,YEUNG D Y.Learning a deep compact image representation for visual tracking[C]//International Conference on Neural Information Processing Systems.New York:Curran Associates Inc.,2013:809-817.
[10] KARPATHY A,TODERICI G,SHETTY S,et al.Large-scale video classification with convolutional neural networks[C]//IEEE Conference on Computer Vision and Pattern Recognition.Piscataway,NJ:IEEE Press,2014:1725-1732.
[11] KANG B N,KIM K Y,KIM D J.Deep convolutional neural network using triplets of faces,deep ensemble,and score-level fusion for face recognition[C]//IEEE Conference on Computer Vision and Pattern Recognition.Piscataway,NJ:IEEE Press,2017:611-618.
[12] WANG C,LAN X P,ZHANG X.How to train triplet networks with 100K identities?[C]//IEEE Conference on Computer Vision and Pattern Recognition.Piscataway,NJ:IEEE Press,2017:1907-1915.
[13] SCHROFF F,KALENICHENKO D,PHILBIN J.Facenet:A unified embedding for face recognition and clustering[C]//IEEE Conference on Computer Vision and Pattern Recognition.Piscataway,NJ:IEEE Press,2015:815-823.
[14] LIU Y S,HUANG C.Scene classification via triplet networks[J].IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2018,11(1):220-237.
[15] HERMANS A,BEYER L,LEIBE B.In defense of the triplet loss for person re-identification[EB/OL].(2017-11-21)[2018-12-01].https://arxiv.org/paf/1703.07737.pdf.
[16] LIU H,TIAN Y,WANG Y,et al.Deep relative distance learning tell the difference between similar vehicles[C]//IEEE Conference on Computer Vision and Pattern Recognition.Piscataway,NJ:IEEE Press,2016:2167-2175.
[17] CHENG D,GONG Y H,ZHOU S P,et al.Person re-identification by multi-channel parts-based CNN with improved triplet loss function[C]//IEEE Conference on Computer Vision and Pattern Recognition.Piscataway,NJ:IEEE Press,2016:1335-1344.
[18] ZHANG S,GONG Y,WANG J.Deep metric learning with improved triplet loss for face clustering in video[C]//Pacific-rim Conference on Advances in Multimedia Information Processing.Berlin:Springer,2016:497-508.
[19] CHEN W,CHEN X,ZHANG J,et al.Beyond triplet loss:A deep quadruplet network for person re-identification[C]//IEEE Conference on Computer Vision and Pattern Recognition.Piscataway,NJ:IEEE Press,2017:1320-1329.
[20] HUANG G,LIU Z,MAATEN L,et al.Densely connected convolutional networks[C]//IEEE Conference on Computer Vision and Pattern Recognition.Piscataway,NJ:IEEE Press,2017:2261-2269.
[21] SZEGEDY C,IOFFE S,VANHOUCKE V,et al.Inception-v4,inception-resnet and the impact of residual connections on learning[C]//AAAI Conference on Artifical Intelligence.Palo Atlo,CA:AAAI Press,2017:4278-4284.
[22] XIE S,GIRSHICK R,DOLLAR P,et al.Aggregated residual transformations for deep neural networks[C]//IEEE Conference on Computer Vision and Pattern Recognition.Piscataway,NJ:IEEE Press,2017:5987-5995.
[23] IOFFE S,SZEGEDY C.Batch normalization:Accelerating deep network training by reducing internal covariate shift[C]//International Conference on Machine Learning.Boston:MIT Press,2015:448-456.
[24] DING S,LIN L,WANG G,et al.Deep feature learning with relative distance comparison for person re-identification[J].Pattern Recognition,2015,48(10):2993-3003.
[25] ZEILER M D,FERGUS R.Stochastic pooling for regularization of deep convolutional neural networks[EB/OL].(2013-01-16)[2018-11-25].https://arxiv.org/pdf/1301.3557.pdf.
[26] GOODFELLOW I J, WARDE-FARLEY D,MIRZA M,et al.Maxout networks[C]//Proceedings of the International Conference on Machine Learning.Boston:MIT Press,2013:1319-1327.
[27] LIN M,CHEN Q,YAN S.Network in network[C]//International Conference on Learning Representations,2014:1-10.
[28] LEE C Y,XIE S N,GALLAGHER P W,et al.Deeply-supervised nets[C]//Proceedings of the International Conference on Artificial Intelligence and Statistics.San Diego,California:PMLR,2015:562-570.
[29] LIAO Z B,CARNEIRO G.Competitive multi-scale convolution[EB/OL].(2015-11-18)[2018-11-10].https://arxiv.org/pdf/1511.05635.pdf.
[30] XU C Y,LU C Y,LIANG X D,et al.Multi-loss regularized deep neural network[J].IEEE Transactions on Circuits and Systems for Video Technology,2016,26(12):2273-2283.
[31] HOFFER E,AILON N.Deep metric learning using triplet network[C]//International Workshop on Similarity-based Pattern Recognition.Berlin:Springer,2015:84-92.
[32] KRIZHEVSKY A,HINTON G.Learning multiple layers of features from tiny images[D].Toronto:University of Toronto,2009:32-35.
[33] NETZER Y,WANG T,COATES A,et al.Reading digits in natural images with unsupervised feature learning[C]//NIPS Workshop on Deep Learning and Unsupervised Feature Learning.New York:Curran Associates Inc.,2011:1-9. |