北京航空航天大学学报 ›› 2019, Vol. 45 ›› Issue (12): 2351-2363.doi: 10.13700/j.bh.1001-5965.2019.0372

• 论文 • 上一篇    下一篇

基于自适应注入模型的遥感图像融合方法

杨勇1, 卢航远1, 黄淑英2, 涂伟1, 李露奕1   

  1. 1. 江西财经大学 信息管理学院, 南昌 330032;
    2. 江西财经大学 软件与物联网工程学院, 南昌 330032
  • 收稿日期:2019-07-09 出版日期:2019-12-20 发布日期:2019-12-31
  • 通讯作者: 杨勇 E-mail:greatyangy@126.com
  • 作者简介:杨勇 男,博士,教授,博士生导师。主要研究方向:图像处理、模式识别;卢航远 男,博士研究生。主要研究方向:图像处理;黄淑英 女,博士,副教授。主要研究方向:图像处理、机器学习;涂伟 男,博士研究生。主要研究方向:图像处理;李露奕 女,硕士研究生。主要研究方向:图像处理。
  • 基金资助:
    国家自然科学基金(61662026,61862030);江西省自然科学基金(20182BCB22006,20181BAB202010,20192ACB20002,20192ACBL21008);江西省教育厅科学技术研究项目(GJJ170312,GJJ170318);江西省研究生创新专项资金(YC2019-B094,YC2018-B065)

Remote sensing image fusion method based on adaptive injection model

YANG Yong1, LU Hangyuan1, HUANG Shuying2, TU Wei1, LI Luyi1   

  1. 1. School of Information Technology, Jiangxi University of Finance and Economics, Nanchang 330032, China;
    2. School of Software and Internet Things Engineering, Jiangxi University of Finance and Economics, Nanchang 330032, China
  • Received:2019-07-09 Online:2019-12-20 Published:2019-12-31
  • Supported by:
    National Natural Science Foundation of China (61662026,61862030); Natural Science Foundation of Jiangxi,China (20182BCB22006, 20181BAB202010,20192ACB20002,20192ACBL21008); Science Research Foundation of Education Bureau of Jiangxi Province, China (GJJ170312,GJJ170318); Knowledge Innovation Fund for the Graduate Students of Jiangxi Province (YC2019-B094,YC2018-B065)

摘要: 遥感图像融合的目的是融合高光谱分辨率、低空间分辨率的多光谱(MS)图像和高空间分辨率、低光谱分辨率的全色(PAN)图像,得到高光谱分辨率与高空间分辨率的融合图像。遥感图像的注入模型中如何确定注入细节及注入系数是该技术研究的关键。针对注入细节优化,先通过模拟MS传感器的特性来定义一种多尺度高斯滤波器,再用该滤波器卷积PAN图像以提取细节,得到与MS图像高度相关的细节。针对注入系数优化,综合考虑光谱信息与细节信息提出一种自适应的注入量系数。为更好地保留边缘信息,提出一种新的边缘保持权重矩阵,实现光谱信息与空间的双保真。将优化后的注入系数与注入细节相乘注入到上采样后的MS图像中,得到融合结果。对所提方法进行性能分析,并在各卫星数据集上进行大量测试,与一些先进的遥感图像融合方法进行对比,实验结果表明,所提方法在主观与综合客观指标上都能达到最优。

关键词: 遥感图像融合, 高斯滤波, 注入系数, 边缘保持, 质量评价

Abstract: The purpose of remote sensing image fusion is to fuse high-spectral-resolution low-spatial-resolution multispectral (MS) images and high-spatial-resolution low-spectral-resolution panchromatic (PAN) images, so as to obtain the fusion images with high spectral resolution and high spatial resolution. How to determine the injection details and injection coefficients in the injection model is the key to image fusion research. For detail optimization, a multi-scale Gaussian filter is defined by simulating the characteristics of MS sensor, and then the filter is used to convolve with PAN image to extract the details and obtain the details highly related to MS image. In order to optimize the injection coefficient, an adaptive injection coefficient is proposed based on spectral information and detail information. To better preserve the edge information, a new edge preserving weight matrix is proposed to achieve the dual fidelity of spectral information and space. Finally, the optimized injection coefficient is multiplied by details and injected into the up-sampled MS image to obtain the final fusion result. Performance analysis of the method proposed in this paper has been carried out and a large number of tests have been conducted in each satellite dataset. The experimental results show that,compared with the most advanced methods, the proposed method performs best in both subjective and comprehensive objective assessment.

Key words: remote sensing image fusion, Gaussian filter, injection coefficient, edge preserving, quality evaluation

中图分类号: 


版权所有 © 《北京航空航天大学学报》编辑部
通讯地址:北京市海淀区学院路37号 北京航空航天大学学报编辑部 邮编:100191 E-mail:jbuaa@buaa.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发