留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

面向InSAR的空气扰动影响机翼挠曲变形建模

朱庄生 张萌

朱庄生, 张萌. 面向InSAR的空气扰动影响机翼挠曲变形建模[J]. 北京航空航天大学学报, 2020, 46(1): 38-50. doi: 10.13700/j.bh.1001-5965.2019.0172
引用本文: 朱庄生, 张萌. 面向InSAR的空气扰动影响机翼挠曲变形建模[J]. 北京航空航天大学学报, 2020, 46(1): 38-50. doi: 10.13700/j.bh.1001-5965.2019.0172
ZHU Zhuangsheng, ZHANG Meng. Air disturbance affecting wing deflection deformation modeling for InSAR[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(1): 38-50. doi: 10.13700/j.bh.1001-5965.2019.0172(in Chinese)
Citation: ZHU Zhuangsheng, ZHANG Meng. Air disturbance affecting wing deflection deformation modeling for InSAR[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(1): 38-50. doi: 10.13700/j.bh.1001-5965.2019.0172(in Chinese)

面向InSAR的空气扰动影响机翼挠曲变形建模

doi: 10.13700/j.bh.1001-5965.2019.0172
基金项目: 

国家自然科学基金 61873019

国家自然科学基金 61573040

国家自然科学基金 61421063

国家自然科学基金 61661136007

国家自然科学基金 61703021

国家自然科学基金 61722103

国家自然科学基金 61571030

国家自然科学基金 61473020

航空科学基金 20170551004

详细信息
    作者简介:

    朱庄生  男, 博士, 副研究员。主要研究方向:惯性导航/组合导航、静动态变形GNSS/光学/惯性精密测量技术

    张萌  女, 硕士研究生。主要研究方向:静动态机翼变形测量、惯性导航/组合导航

    通讯作者:

    朱庄生, E-mail:zszhu@buaa.edu.cn

  • 中图分类号: V211.3;V212.11;TB125

Air disturbance affecting wing deflection deformation modeling for InSAR

Funds: 

National Natural Science Foundation of China 61873019

National Natural Science Foundation of China 61573040

National Natural Science Foundation of China 61421063

National Natural Science Foundation of China 61661136007

National Natural Science Foundation of China 61703021

National Natural Science Foundation of China 61722103

National Natural Science Foundation of China 61571030

National Natural Science Foundation of China 61473020

Aeronautical Science Foundation of China 20170551004

More Information
  • 摘要:

    针对多节点InSAR机翼挠曲变形误差问题,提出了一种基于机理模型综合参数辨识的方法对空气扰动影响机翼挠曲变形分层建模。首先,将大气湍流作为InSAR成像工作段的主要空气扰动,并基于Dryden模型分析得出了载机工作高度和速度是影响大气湍流的主要因素,将大气湍流影响机翼挠曲变形建模转换为载机在不同工作状态(高度变化、速度变化)的机翼挠曲变形分层建模。其次,基于空气动力学理论及悬臂梁变形理论建立机翼挠曲变形机理模型,借助计算流体力学与计算结构力学仿真分析获取实验数据辨识模型参数。最后,通过仿真实验验证,所提方法与模态叠加原理计算横向位移精度均优于0.6 mm(相对误差0.3%),轴向位移精度均优于0.015 mm(相对误差0.2%)。对实验室搭建的分布式光纤光栅测量系统进行测试,利用模态叠加原理计算变形量来验证所提方法,横向位移精度优于0.3 mm(相对误差1%),轴向位移精度优于0.06 mm(相对误差3%)。

     

  • 图 1  机载分布式InSAR系统

    Figure 1.  Airborne distributed InSAR system

    图 2  不同高度变化引起的垂直风切变

    Figure 2.  Vertical wind shear caused by different height changes

    图 3  1-cosine阵风模型

    Figure 3.  1-cosine gust model

    图 4  机翼模型

    Figure 4.  Wing model

    图 5  机翼飞行流场区域

    Figure 5.  Wing flight flow field area

    图 6  机翼所受气动载荷及湍流速度变化

    Figure 6.  Changes in aerodynamic loads and turbulent velocity on wing

    图 7  机翼结构Y向位移

    Figure 7.  Y-direction displacement of wing structure

    图 8  不同工作速度时的机翼挠曲变形

    Figure 8.  Deflection of wing at different working speeds

    图 9  不同工况下测点15的机翼挠曲变形

    Figure 9.  Wing deflection deformation at measuring point 15 under different conditions

    图 10  蒙皮表面气动载荷分布

    Figure 10.  Aerodynamic load distribution on skin surface

    图 11  机翼骨架结构变形示意图

    Figure 11.  Schematic diagram of wing skeleton structure deformation

    图 12  高度变化时的AYAZ系数

    Figure 12.  AY and AZ at different heights

    图 13  骨架结构的应变、位移模态

    Figure 13.  Skeleton structure strain and displacement mode

    图 14  实验室机翼结构

    Figure 14.  Wing structure in laboratory

    图 15  机翼加载实验

    Figure 15.  Loading experiment in wing

    图 16  模态值与拟合模型值对比

    Figure 16.  Comparison of modal and fitted values

    表  1  铝合金7075材料属性

    Table  1.   Aluminum alloy 7075 material properties

    参数 数值
    密度/(g·cm-3) 2.81
    极限抗拉强度/MPa 524
    极限屈服强度/MPa 455
    弹性模量/GPa 71
    泊松比 0.33
    下载: 导出CSV

    表  2  不同工作高度上的大气物理参数[22]

    Table  2.   Atmospheric physical parameters at different working altitudes [22]

    工作高度/km 压力/Pa 温度 密度/(g·cm-3)
    摄氏度 开尔文
    2.0 79 810 2.35 275.5 1.009
    3.0 70 510 -3.25 269.9 0.908 7
    3.5 66 100 -6.27 266.88 0.862 5
    4.0 61 950 -9.29 263.86 0.818 1
    4.5 58 070 -12.3 260.85 0.775 6
    5.0 54 420 -15.32 257.83 0.734 8
    5.5 51 000 -18.34 254.81 0.695 6
    6.0 47 680 -21.62 251.53 0.658 9
    6.5 44 520 -24.97 248.18 0.623 7
    7.0 41 580 -28.32 244.83 0.59
    7.5 38 770 -31.65 241.5 0.557 7
    8.0 36 080 -35.07 238.08 0.526 8
    下载: 导出CSV

    表  3  载机工作速度影响的参数辨识结果

    Table  3.   Parameter identification results of carrier speed

    测点 u=Av2 R2 SSE u=Av2.014 R2 SSE u=Av2.015 R2 SSE
    2 u=6.492×10-7v2 1.000 7.22×10-10 u=6.022×10-8v2.014 1.000 1.33×10-11 u=5.99×10-8v2.015 1.000 4.57×10-12
    7 u=1.001×10-6v2 1.000 1.57×10-7 u=9.284×10-7v2.014 1.000 1.52×10-9 u=9.234×10-7v2.015 1.000 3.34×10-11
    12 u=2.407×10-6v2 1.000 8.96×10-7 u=2.233×10-6v2.014 1.000 7.67×10-9 u=2.221×10-6v2.015 1.000 1.74×10-9
    15 u=3.424×10-6v2 1.000 1.82×10-6 u=3.176×10-6v2.014 1.000 1.52×10-8 u=3.159×10-6v2.015 1.000 2.98×10-9
    下载: 导出CSV

    表  4  载机工作高度影响的参数辨识结果

    Table  4.   Parameter identification results of carrier's working height

    测点 指数函数u=aebP R2 SSE 线性模型u=aP+b R2 SSE 幂函数u=aP0.833 R2 SSE
    2 u=2.286×10-8e1.368×10-5P 0.996 1.42×10-18 u=7.27P×10-13+8.696×10-9 1.000 5.08×10-20 u=5.484×10-12P0.833 1.000 8.60×10-21
    7 u=3.522×10-7e1.368×10-5P 0.996 3.52×10-16 u=1.121P×10-11+1.339×10-7 1.000 1.51×10-17 u=8.454×10-11P0.833 1.000 2.82×10-18
    12 u=8.467×10-7e1.369×10-5P 0.996 2.05×10-15 u=2.696P×10-11+3.215×10-7 1.000 9.16×10-17 u=2.033×10-10P0.833 1.000 1.80×10-17
    15 u=1.205×10-6e1.368×10-5P 0.996 4.16×10-15 u=3.834P×10-11+4.585×10-7 1.000 1.89×10-16 u=2.892×10-10P0.833 1.000 3.74×10-17
    下载: 导出CSV

    表  5  本文模型预测Y向变形

    Table  5.   Y-direction deformation predicted by proposed model

    工作速度/(m·s-1) 工作高度/km ANSYS Workbench
    Y向变形量/mm
    本文模型
    Y向变形量/mm
    测点7 测点12 测点15 测点7 测点12 测点15
    250 1.5 3.85 4.38 4.30 3.85 4.37 4.31
    200 1.5 2.45 2.79 2.74 2.46 2.79 2.75
    2.0 2.33 2.65 2.60 2.33 2.65 2.61
    6.5 1.44 1.63 1.61 1.43 1.63 1.61
    7.0 1.36 1.54 1.52 1.35 1.54 1.52
    7.5 1.28 1.46 1.44 1.28 1.45 1.43
    8.0 1.21 1.38 1.36 1.20 1.37 1.35
    185 2.5 1.89 2.15 2.12 1.89 2.15 2.12
    235 2.5 3.07 3.48 3.44 3.06 3.48 3.44
    285 2.5 4.52 5.14 5.07 4.52 5.14 5.07
    下载: 导出CSV

    表  6  本文模型预测Z向变形

    Table  6.   Z-direction deformation predicted by proposed model

    工作速度/(m·s-1) 工作高度/km ANSYS Workbench
    Z向变形量/mm
    本文模型
    Z向变形量/mm
    测点7 测点12 测点15 测点7 测点12 测点15
    250 1.5 73.36 176.36 250.83 73.24 176.14 250.56
    200 1.5 46.80 112.48 159.97 46.72 112.35 159.82
    2.0 44.44 106.81 151.91 44.37 106.69 151.77
    6.5 27.31 65.67 93.41 27.28 65.61 93.33
    7.0 25.81 62.08 88.31 25.77 61.98 88.17
    7.5 24.38 58.64 83.43 24.31 58.47 83.17
    8.0 23.01 55.35 78.75 22.90 55.07 78.34
    185 2.5 36.04 86.66 123.28 36.01 86.60 123.19
    235 2.5 58.36 140.34 199.63 58.32 140.24 199.49
    285 2.5 86.05 206.92 294.36 86.02 206.86 294.26
    下载: 导出CSV

    表  7  Y向变形模态叠加原理计算结果

    Table  7.   Y-direction deformation calculated by modal superposition principle

    工作速度/(m·s-1) 工作高度/km ANSYS Workbench
    Y向变形量/mm
    模态叠加原理
    Y向变形量/mm
    测点7 测点12 测点15 测点7 测点12 测点15
    250 1.5 3.85 4.38 4.30 3.85 4.37 4.30
    200 1.5 2.45 2.79 2.74 2.45 2.79 2.74
    2.0 2.33 2.65 2.60 2.33 2.65 2.60
    6.5 1.44 1.63 1.61 1.44 1.63 1.61
    7.0 1.36 1.54 1.52 1.36 1.54 1.52
    7.5 1.28 1.46 1.44 1.28 1.46 1.44
    8.0 1.21 1.38 1.36 1.21 1.38 1.36
    185 2.5 1.89 2.15 2.12 1.89 2.15 2.12
    235 2.5 3.07 3.48 3.44 3.07 3.49 3.43
    285 2.5 4.52 5.14 5.07 4.52 5.14 5.06
    下载: 导出CSV

    表  8  Z向变形模态叠加原理计算结果

    Table  8.   Z-direction deformation calculated by modal superposition principle

    工作速度/(m·s-1) 工作高度/km ANSYS Workbench
    Z向变形量/mm
    模态叠加原理
    Z向变形量/mm
    测点7 测点12 测点15 测点7 测点12 测点15
    250 1.5 73.36 176.36 250.83 73.24 176.03 250.31
    200 1.5 46.80 112.48 159.97 46.70 112.23 159.54
    2.0 44.44 106.81 151.91 44.35 106.58 151.52
    6.5 27.31 65.67 93.41 27.28 65.60 93.31
    7.0 25.81 62.08 88.31 25.80 62.02 88.24
    7.5 24.38 58.64 83.43 24.37 58.60 83.37
    8.0 23.01 55.35 78.75 23.01 55.32 78.72
    185 2.5 36.04 86.66 123.28 36.00 86.56 123.13
    235 2.5 58.36 140.34 199.63 58.31 140.18 199.40
    285 2.5 86.05 206.92 294.36 85.97 206.70 294.02
    下载: 导出CSV

    表  9  本文模型与模态叠加原理计算误差值对比

    Table  9.   Comparison of error values calculated by proposed model and modal superposition principle

    工作速度/(m·s-1) 工作高度/km Y Z
    ANSYS仿真位移/mm 模态叠加原理误差/mm 本文模型误差/mm ANSYS仿真位移/mm 模态叠加原理误差/mm 本文模型误差/mm
    250 1.5 4.30 0.004 0.011 250.83 0.520 0.303
    200 1.5 2.74 0.004 0.013 159.97 0.426 0.182
    2.0 2.60 0.004 0.011 151.91 0.388 0.169
    6.5 1.61 0.002 0.002 93.41 0.101 0.084
    7.0 1.52 0.002 0.004 88.31 0.078 0.146
    7.5 1.44 0.002 0.007 83.43 0.054 0.251
    8.0 1.36 0.002 0.010 78.75 0.031 0.415
    185 2.5 2.12 0.002 0.002 123.28 0.155 0.091
    235 2.5 3.44 0.003 0.003 199.63 0.232 0.148
    285 2.5 5.07 0.004 0.003 294.36 0.341 0.109
    下载: 导出CSV

    表  10  全站仪测量值

    Table  10.   Total station measurement values

    加载/N Y向位移/mm Z向位移/mm
    测点1 测点2 测点1 测点2
    4.9 -0.18 -0.18 -2.97 -4.50
    9.8 -0.34 -0.42 -5.70 -8.70
    14.7 -0.56 -0.57 -8.51 -13.01
    19.6 -0.79 -0.84 -11.45 -17.49
    24.5 -0.96 -1.06 -14.17 -21.66
    29.4 -1.14 -1.32 -16.95 -25.93
    34.3 -1.36 -1.55 -19.66 -29.98
    39.2 -1.57 -1.81 -22.45 -34.24
    44.1 -1.77 -2.04 -25.13 -38.30
    49 -2.06 -2.28 -27.88 -42.32
    下载: 导出CSV

    表  11  预测值与全站仪测量值对比

    Table  11.   Comparison of predicted and total station measurement values

    测点 加载/N Y向位移/mm Z向位移/mm
    全站仪测量值 本文方法预测值 绝对误差 全站仪测量值 本文方法预测值 绝对误差
    测点1 39.2 -1.57 -1.51 0.06 -22.45 -22.52 0.07
    44.1 -1.77 -1.78 0.01 -25.13 -25.08 0.05
    49 -2.06 -2.06 0 -27.88 -27.57 0.31
    测点2 39.2 -1.81 -1.84 0.03 -34.24 -34.41 0.17
    44.1 -2.04 -2.09 0.05 -38.3 -38.39 0.09
    49 -2.28 -2.34 0.06 -42.32 -42.31 0.01
    下载: 导出CSV
  • [1] 潘舟浩, 刘波, 张清娟, 等.三基线毫米波InSAR的相位解缠及高程反演[J].红外与毫米波学报, 2013, 32(5):474-480. http://d.old.wanfangdata.com.cn/Periodical/hwyhmb201305017

    PAN Z H, LIU B, ZHANG Q J, et al.Millimeter-wave InSAR phase unwrapping and DEM reconstruction based on three-baseline[J].Journal of Infrared and Millimeter Waves, 2013, 32(5):474-480(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/hwyhmb201305017
    [2] XU W, CHANG E C, KWOH L K, et al.Phase-unwrapping of SAR interferogram with multi-frequency or multi-baseline[C]//IEEE International Geoscience and Remote Sensing Symposium.Piscataway, NJ: IEEE Press, 1994: 4986460.
    [3] ZHANG K, WU D, WANG S, et al.A new method for estimating unambiguous phase observations of re-identified coherent targets for multi-baseline InSAR techniques[J].Remote Sensing Letters, 2017, 8(12):1172-1179. doi: 10.1080/2150704X.2017.1353223
    [4] WANG B, DENG Z H, LIU C, et al.Estimation of information sharing error by dynamic deformation between inertial navigation systems[J].IEEE Transactions on Industrial Electronics, 2014, 61(4):2015-2023. doi: 10.1109/TIE.2013.2271595
    [5] DAI H D, LUA J H, GUO W.IMU based deformation estimation about the deck of large ship[J].Optik, 2016, 127(7):3535-3540. doi: 10.1016/j.ijleo.2015.12.135
    [6] MAJEED S, FANG J.Performance improvement of angular rate matching shipboard transfer alignment[C]//International Conference on Electronic Measurement & Instruments.Piscataway, NJ: IEEE Press, 2009: 10962531.
    [7] 解春明, 赵剡, 杨传春.传递对准滤波中机翼变形噪声的在线补偿算法[J].系统工程与电子技术, 2011, 33(2):370-375. doi: 10.3969/j.issn.1001-506X.2011.02.28

    XIE C M, ZHAO Y, YANG C C.Online compensation algorithm of wing flexure noise in transfer alignment filtering[J].Systems Engineering and Electronics, 2011, 33(2):370-375(in Chinese). doi: 10.3969/j.issn.1001-506X.2011.02.28
    [8] KAIN J E, CLOUTIER J R.Rapid transfer alignment for tactical weapon applications: AIAA-89-3581[R].Reston: AIAA, 1989.
    [9] WENDEL J, METZGER J, TROMMER G F.Rapid transfer alignment in the presence of time correlated measurement and system noise: AIAA-2004-4778[R].Reston: AIAA, 2004.
    [10] DUREN R M, LIEBE C C.The SRTM sub-arcsecond metrology camera[C]//IEEE Aerospace Conference.Piscataway, NJ: IEEE Press, 2001: 2037-2046.
    [11] RICHARDS L, PARKER A R, KO W L, et al.Fiber optic wing shape sensing on NASA's Ikhana UAV[R]: Washington, D.C.: NASA, 2008: 5-13.
    [12] 孙东科, 林家浩.利用CFD计算技术进行机翼模型气动特性分析[J].航空计算技术, 2010, 40(1):21-24. doi: 10.3969/j.issn.1671-654X.2010.01.006

    SUN D K, LIN J H.Aerodynamic analysis of NACA0012 airfoil model using CFD[J].Aeronautical Computing Technique, 2010, 40(1):21-24(in Chinese). doi: 10.3969/j.issn.1671-654X.2010.01.006
    [13] 王云, 徐江锋.基于预变形设计的柔性机翼气动性能分析[J].南昌航空大学学报(自然科学版), 2013, 27(2):47-51. doi: 10.3969/j.issn.1001-4926.2013.02.008

    WANG Y, XU J F.Analysis of aerodynamics characteristic of flexible wing on pre-deformation[J].Joumal of Nanchang Hangkong University(Natural Sciences), 2013, 27(2):47-51(in Chinese). doi: 10.3969/j.issn.1001-4926.2013.02.008
    [14] 陈志敏, 徐敏, 陈士橹.跨声速静气动弹性结构响应分析[J].空军工程大学学报(自然科学版), 2005, 6(1):1-4. doi: 10.3969/j.issn.1009-3516.2005.01.001

    CHEN Z M, XU M, CHEN S L.An analysis of structure response for transonic static aeroelasticity[J].Journal of Air Force Engineering University(Natrnal Science Edition), 2005, 6(1):1-4(in Chinese). doi: 10.3969/j.issn.1009-3516.2005.01.001
    [15] 张华, 马东立, 马铁林.弹性变形对柔性机翼气动特性影响分析[J].北京航空航天大学学报, 2008, 34(5):487-490. https://bhxb.buaa.edu.cn/CN/Y2008/V34/I05/487

    ZHANG H, MA D L, MA T L.Analysis of aerodynamics characteristic of flexible wing caused by deflection[J].Journal of Beijing University of Aeronautics and Astronautics, 2008, 34(5):487-490(in Chinese). https://bhxb.buaa.edu.cn/CN/Y2008/V34/I05/487
    [16] GONZALEZ J H, BACHMANN M, SCHEIBER R, et al.TanDEM-X DEM calibration and processing experiments with E-SAR[C]//IEEE International Geoscience and Remote Sensing Symposium.Piscataway, NJ: IEEE Press, 2008: 10460434.
    [17] LOU Y.Review of the NASA/JPL airborne synthetic aperture radar system[C]//IEEE International Geoscience and Remote Sensing Symposium.Piscataway, NJ: IEEE Press, 2002: 1702-1704.
    [18] SØREN N M, MARTIN J M, ZEBKER H A.Analysis and evaluation of the NASA/JPL TOPSAR across-track interferometric SAR system[J].IEEE Transactions on Geoscience and Remote Sensing, 1995, 33(2):383-391. doi: 10.1109/TGRS.1995.8746019
    [19] 李道京.毫米波干涉合成孔径雷达[J].高科技与产业化, 2013, 9(11):40-43. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gkjycyh201311005

    LI D J.Millimeter wave interference synthetic aperture radar[J].High-Technology & Industrialization, 2013, 9(11):40-43(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gkjycyh201311005
    [20] 黄刚, 刘力荣, 史雪静, 等.国产机载微型InSAR系统的DEM精度分析[J].测绘科学, 2017, 42(8):128-133. http://d.old.wanfangdata.com.cn/Periodical/chkx201708023

    HUANG G, LIU L R, SHI X J, et al.Accuracy analysis of DEM based on domestic airborne mini-InSAR system[J].Science of Surveying and Mapping, 2017, 42(8):128-133(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/chkx201708023
    [21] 朱庄生, 郭韬.分布式POS传递对准对InSAR干涉测量影响的分析[J].中国惯性技术学报, 2014, 22(4):432-438. http://d.old.wanfangdata.com.cn/Periodical/zggxjsxb201404003

    ZHU Z S, GUO T.Effect of distributed POS transfer alignment on InSAR interferometic measurement[J].Journal of Chinese Inertial Technology, 2014, 22(4):432-438(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/zggxjsxb201404003
    [22] 中国人民解放军总装备部.中国参考大气(地面~80 km): GJB 5601-2006[S].北京: 总装备部军标出版发行部, 2006.

    PLA General Armament Department.China reference atmosphere(ground~80 km): GJB 5601-2006[S].Beijing: General Armament Department Military Standard Publishing Department, 2006(in Chinese).
    [23] 胡明宝, 肖文建.风廓线雷达中风切变分析方法的初步研究[J].气象科学, 2010, 30(4):510-515. doi: 10.3969/j.issn.1009-0827.2010.04.012

    HU M B, XIAO W J.The preliminary study on analysis method of wind shear using wind profiler[J].Journal of the Meteorological Sciences, 2010, 30(4):510-515(in Chinese). doi: 10.3969/j.issn.1009-0827.2010.04.012
    [24] 张序, 刘岷江.飞行中风切变的判断及处置[J].航空安全, 2008(6):62-64. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgmyhk200806046

    ZHANG X, LIU M J.Judgement and handlig of windshear during flight[J].Safety & Security, 2008(6):62-64(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgmyhk200806046
    [25] 陈楠.某大型客机受突风载荷作用产生的非定常气动力计算[D].南京: 南京航空航天大学, 2013. http://cdmd.cnki.com.cn/article/cdmd-10287-1014059594.htm

    CHEN N.The calculation of unsteady aerodynamics effected by gusts upon an airliner[D].Nanjing: Nanjing University of Aeronautics and Astronautics, 2013(in Chinese). http://cdmd.cnki.com.cn/article/cdmd-10287-1014059594.htm
    [26] ETKIN B.Turbulent wind and its effect on flight[J].Journal of Aircraft, 2012, 18(5):327-345. doi: 10.2514-3.48243/
    [27] 赵震炎, 肖业伦, 施毅坚.Dryden大气紊流模型的数字仿真技术[J].航空学报, 1986, 7(5):433-443. doi: 10.3321/j.issn:1000-6893.1986.05.003

    ZHAO Z Y, XIAO Y L, SHI Y J.A digital simulation for Dryden atmospheric turbulence model[J].Acta Aeronautica et Astronautica Sinica, 1986, 7(5):433-443(in Chinese). doi: 10.3321/j.issn:1000-6893.1986.05.003
    [28] 高静, 洪冠新, 梁灶清.Von Karman模型三维大气紊流仿真理论与方法[J].北京航空航天大学学报, 2012, 38(6):736-740. https://bhxb.buaa.edu.cn/CN/Y2012/V38/I6/736

    GAO J, HONG G X, LIANG Z Q.Theory and method of numerical simulation for 3D atmospheric turbulence field based on Von Karman model[J].Journal of Beijing University of Aeronautics and Astronautics, 2012, 38(6):736-740(in Chinese). https://bhxb.buaa.edu.cn/CN/Y2012/V38/I6/736
    [29] TATOM F B, SMITH S R, FICHTL G H.Simulation of atmospheric turbulent gusts and gust gradients[J].Journal of Aircraft, 1981, 19(4):264-271. doi: 10.2514-3.57388/
    [30] 高振兴.复杂大气扰动下大型飞机飞行实时仿真建模研究[D].南京: 南京航空航天大学, 2009. http://cdmd.cnki.com.cn/Article/CDMD-10287-2010080013.htm

    GAO Z X.Research on real-time flight simulation of large aircraft in complex atmospheric disturbance[D].Nanjing: Nanjing University of Aeronautics and Astronautics, 2009(in Chinese). http://cdmd.cnki.com.cn/Article/CDMD-10287-2010080013.htm
    [31] 詹斌.石墨烯增强纳米复合材料变形机理与力学建模研究[D]: 杭州: 浙江大学, 2018. http://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CMFD&filename=1018068254.nh

    ZHAN B.On deformation mechanism and modeling of graphene-reinforced nanocomposites[D].Hangzhou: Zhejiang University, 2018(in Chinese). http://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CMFD&filename=1018068254.nh
    [32] ANGERER B T, HINTZ C, SCHRODER D.Online identification of a nonlinear mechatronic system[J].Control Engineering Practice, 2004, 12(11):1465-1478. doi: 10.1016/j.conengprac.2004.03.005
    [33] SOL H, HUA H, VISSCHER J D, et al.A mixed numerical/experimental technique for the nondestructive identification of the stiffness properties of fibre reinforced composite materials[J].NDT & E International, 1997, 30(2):85-91. http://cn.bing.com/academic/profile?id=084ac09db1c313af6faa3e82b075cdb8&encoded=0&v=paper_preview&mkt=zh-cn
    [34] 关永亮.复合材料无人机结构和飞行动力学关键技术研究[D].北京: 中国科学院大学, 2017. http://cdmd.cnki.com.cn/Article/CDMD-80139-1017063974.htm

    GUAN Y L.Research on key tecnologies of structural and flight dynamics for a composite unmanned aerial vehicle[D].Beijing: University of Chinese Academy of Sciences, 2017(in Chinese). http://cdmd.cnki.com.cn/Article/CDMD-80139-1017063974.htm
    [35] 张立.机翼结构的多约束拓扑优化方法及其应用研究[D].沈阳: 沈阳航空航天大学, 2017. http://cdmd.cnki.com.cn/Article/CDMD-10143-1017046473.htm

    ZHANG L.Multi constrainst optimization method and application research of wing structure[D].Shenyang: Shenyang Aerospace University, 2017(in Chinese). http://cdmd.cnki.com.cn/Article/CDMD-10143-1017046473.htm
    [36] 刘鸿文.材料力学[M].4版.北京:高等教育出版社, 2004:188-190.

    LIU H W.Mechanics of materials[M].4th ed.Beijing:Higher Education Press, 2004:188-190(in Chinese).
    [37] 史志伟, 倪芳原, 陈永亮.基于两步线性回归的状态空间模型建立与验证[J].空气动力学学报, 2013, 31(6):699-703. http://d.old.wanfangdata.com.cn/Periodical/kqdlxxb201306003

    SHI Z W, NI F Y, CHEN Y L.The state-space models based on two-step linear regression method[J].Acta Aerodynamica Sinica, 2013, 31(6):699-703(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/kqdlxxb201306003
    [38] KIM H I, KANG L H, HAN J H.Shape estimation with distributed fiber Bragg grating sensors for rotating structures[J].Smart Materials & Structures, 2011, 20(3):035011. http://cn.bing.com/academic/profile?id=4123f249d01166b17250b160b857c7fb&encoded=0&v=paper_preview&mkt=zh-cn
  • 加载中
图(16) / 表(11)
计量
  • 文章访问数:  588
  • HTML全文浏览量:  34
  • PDF下载量:  232
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-04-22
  • 录用日期:  2019-07-19
  • 网络出版日期:  2020-01-20

目录

    /

    返回文章
    返回
    常见问答