留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Boost电路开关瞬间电压尖峰产生机理及抑制方法

于兆龙 葛红娟 李尚 杨帆

于兆龙, 葛红娟, 李尚, 等 . Boost电路开关瞬间电压尖峰产生机理及抑制方法[J]. 北京航空航天大学学报, 2020, 46(1): 198-209. doi: 10.13700/j.bh.1001-5965.2019.0154
引用本文: 于兆龙, 葛红娟, 李尚, 等 . Boost电路开关瞬间电压尖峰产生机理及抑制方法[J]. 北京航空航天大学学报, 2020, 46(1): 198-209. doi: 10.13700/j.bh.1001-5965.2019.0154
YU Zhaolong, GE Hongjuan, LI Shang, et al. Mechanism of voltage spike production during switching transients and its suppression methods in Boost converter[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(1): 198-209. doi: 10.13700/j.bh.1001-5965.2019.0154(in Chinese)
Citation: YU Zhaolong, GE Hongjuan, LI Shang, et al. Mechanism of voltage spike production during switching transients and its suppression methods in Boost converter[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(1): 198-209. doi: 10.13700/j.bh.1001-5965.2019.0154(in Chinese)

Boost电路开关瞬间电压尖峰产生机理及抑制方法

doi: 10.13700/j.bh.1001-5965.2019.0154
基金项目: 

国家自然科学基金 51737006

详细信息
    作者简介:

    于兆龙  男, 硕士研究生。主要研究方向:半导体器件建模、高效率逆变技术

    葛红娟  女, 博士, 博士生导师, 教授。主要研究方向:矩阵变换器的建模与控制、电机驱动、适航技术等

    通讯作者:

    葛红娟.E-mail:allenge@nuaa.edu.cn

  • 中图分类号: TM131.2

Mechanism of voltage spike production during switching transients and its suppression methods in Boost converter

Funds: 

National Natural Science Foundation of China 51737006

More Information
  • 摘要:

    Boost变换器常用作两级式逆变器的前级升压电路,由于电路中寄生参数的存在,开关瞬间输出电压叠加有瞬态尖峰,降低了波形质量,甚至影响逆变器的正常工作。为了抑制直流环节电压尖峰,研究了Boost电路开关瞬态过程,针对瞬态电路开关特性和开关器件工作状态,建立了基于金属氧化物半导体场效应晶体管(MOSFET)和肖特基二极管(SBD)的换流单元的解析模型,进一步分析了不同寄生参数对开关瞬态电流特性的影响,以及导致电压尖峰的机理等。仿真分析了寄生参数与输出电压尖峰大小的关系,提出了“减缓开关速度”和“降低输出端寄生电感”2种从源头抑制输出电压尖峰的方法。仿真和实验表明,这2种抑制方法能够有效减小电压尖峰,提高Boost电路的输出电压性能。

     

  • 图 1  考虑寄生参数的Boost变换器等效电路

    Figure 1.  Equivalent circuit of Boost converter with parasitic parameters

    图 2  典型电容曲线分段线性化处理

    Figure 2.  Piecewise linearization of typical capacitance curves

    图 3  MOSFET开通瞬间典型波形

    Figure 3.  Typical turn-on transient waveforms of MOSFET

    图 4  MOSFET关断瞬间典型波形

    Figure 4.  Typical turn-off transient waveforms of MOSFET

    图 5  Boost变换器在开通瞬态阶段Ⅱ~Ⅲ和关断瞬态阶段Ⅳ~Ⅴ等效电路

    Figure 5.  Equivalent circuits of Boost converter in transient phase Ⅱ-Ⅲ of turn-on and phase Ⅳ-Ⅴ of turn-off

    图 6  不同Ld下的开关瞬间关键波形

    Figure 6.  Key switching transient waveforms with different Ld

    图 7  不同Ls下的开关瞬间关键波形

    Figure 7.  Key switching transient waveforms with different Ls

    图 8  不同Lb下的开关瞬间关键波形

    Figure 8.  Key switching transient waveforms with different Lb

    图 9  不同寄生电感及驱动电阻下的开关瞬间电压过冲

    Figure 9.  Switching transient voltage overshoots with different parasitic inductance and driving resistance

    图 10  不同Cgs下的开关瞬间关键波形

    Figure 10.  Key switching transient waveforms with different Cgs

    图 11  不同Cgd下的开关瞬间关键波形

    Figure 11.  Key switching transient waveforms with different Cgd

    图 12  不同Cds下的开关瞬间关键波形

    Figure 12.  Key switching transient waveforms with different Cds

    图 13  不同Cj下的开关瞬间关键波形

    Figure 13.  Key switching transient waveforms with different Cj

    图 14  不同寄生电容下的开关瞬间电压过冲

    Figure 14.  Switching transient voltage overshoots with different parasitic capacitance

    图 15  不同Rg下的开关瞬间关键波形

    Figure 15.  Key switching transient waveforms with different Rg

    图 16  优化前开关瞬间输出电压交流分量波形

    Figure 16.  Ac-component waveform of output voltage of switching transient before optimization

    图 17  减缓开关速度后开关瞬间输出电压交流分量波形

    Figure 17.  Ac-component waveform of output voltage of switching transient after slowing down switching speed

    图 18  减小输出端寄生电感后开关瞬间输出电压交流分量波形

    Figure 18.  Ac-component waveform of output voltage of switching transient after reducing parasitic inductance of output end

    图 19  不同驱动电阻下MOSFET在开关瞬间的能量耗散图和Boost变换器的效率曲线

    Figure 19.  Energy dissipation diagram of MOSFET at switching moment and efficiency curve of Boost converter with different driving resistors

    表  1  测试电路参数

    Table  1.   Parameters of test circuit

    模块 参数 数值
    功率回路 uo-dc/V 120
    L/μH 420
    Cbuffer/μF 680
    RL 20
    驱动回路 UCC/V 15
    UEE/V -9
    D/% 50
    fs/kHz 50
    下载: 导出CSV
  • [1] WANG J, JI B, LU X, et al.Steady-state and dynamic input current low-frequency ripple evaluation and reduction in two-stage single-phase inverters with back current gain model[J].IEEE Transactions on Power Electronics, 2014, 29(8):4247-4260. doi: 10.1109/TPEL.2013.2292609
    [2] 杜青, 崔波, 夏宁, 等.一种新型大功率升降压变换器及控制方法[J].北京航空航天大学学报, 2017, 43(3):472-480. doi: 10.13700/j.bh.1001-5965.2016.0225

    DU Q, CUI B, XIA N, et al.A novel high-power step-up/step-down converter and control methods[J].Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(3):472-480(in Chinese). doi: 10.13700/j.bh.1001-5965.2016.0225
    [3] 张厚升, 赵艳雷.单相双级式光伏并网逆变器[J].电力自动化设备, 2010, 30(8):95-99. doi: 10.3969/j.issn.1006-6047.2010.08.020

    ZHANG H S, ZHAO Y L.Single-phase double-stage photovoltaic grid-connected inverter[J].Electric Power Automation Equipment, 2010, 30(8):95-99(in Chinese). doi: 10.3969/j.issn.1006-6047.2010.08.020
    [4] TIAN Y, YANG X, XIE R, et al.A passive component based gate drive scheme for negative gate voltage spike mitigation in a sic-based dual-active bridge[C]//2018 IEEE Energy Conversion Congress and Exposition (ECCE).Piscataway, NJ: IEEE Press, 2018: 1841-1845.
    [5] WU Q, WANG Q, XIAO L, et al.One adaptive turn-off method for PFC converter with voltage spike limitation[C]//2016 IEEE Applied Power Electronics Conference and Exposition (APEC).Piscataway, NJ: IEEE Press, 2016: 1657-1662. https://www.researchgate.net/publication/303513910_One_adaptive_turn-off_method_for_PFC_converter_with_voltage_spike_limitation
    [6] PATEL H K.Voltage transient spikes suppression in flyback converter using dissipative voltage snubbers[C]//2008 3rd IEEE Conference on Industrial Electronics and Applications. Piscataway, NJ: IEEE Press, 2008: 897-901. 224321871_Voltage_transient_spikes_suppression_in_flyback_converter_using_dissipative_voltage_snubbers
    [7] WANG J, CHUNG S H, LI T H.Characterization and experimental assessment of the effects of parasitic elements on the MOSFET switching performance[J].IEEE Transactions on Power Electronics, 2012, 28(1):573-590. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=05e0f54b81a849afa495060dad80a100
    [8] CASTRO I, ROIG J, GELAGAEV R, et al. Analytical switching loss model for superjunction MOSFET with capacitive nonlinearities and displacement currents for DC-DC power converters[J].IEEE Transactions on Power Electronics, 2016, 31(3):2485-2495. doi: 10.1109/TPEL.2015.2433017
    [9] CHEN Z, BOROYEVICH D, BURGOS R.Experimental parametric study of the parasitic inductance influence on MOSFET switching characteristics[C]//2010 International Power Electronics Conference(ECCE).Piscataway, NJ: IEEE Press, 2010: 164-169. 224165533_Experimental_parametric_study_of_the_parasitic_inductance_influence_on_MOSFET_switching_characteristics
    [10] 朱义诚, 赵争鸣, 王旭东, 等.SiC MOSFET与SiC SBD换流单元瞬态模型[J].电工技术学报, 2017, 32(12):58-69. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dgjsxb201712009

    ZHU Y C, ZHAO Z M, WANG X D, et al.Analytical transient model of commutation units with SiC MOSFET and SiC SBD pair[J].Transactions of China Electrotechnical Society, 2017, 32(12):58-69(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dgjsxb201712009
    [11] CUI T, MA Q, XU P, et al.Analysis and optimization of power MOSFETs shaped switching transients for reduced EMI generation[J].IEEE Access, 2017, 5(1):20440-20448. http://cn.bing.com/academic/profile?id=7713a0c8808a24b764d8aa817fedc4ef&encoded=0&v=paper_preview&mkt=zh-cn
    [12] ENGELMANN G, SENONER T, DONCKER R W D.Experimental investigation on the transient switching behavior of SiC MOSFETs using a stage-wise gate driver[J].CPSS Transactions on Power Electronics and Applications, 2018, 3(1):77-87. doi: 10.24295/CPSSTPEA.2018.00008
    [13] 罗剑波, 范伟, 彭凯.SiC MOSFET模块高频吸收电路研究[J].大功率变流技术, 2016, 5(1):23-30. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dglbljs201605006

    LUO J B, FAN W, PENG K.High frequency snubber circuit for SiC MOSFET module[J].High Power Converter Technology, 2016, 5(1):23-30(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dglbljs201605006
    [14] 柯俊吉, 赵志斌, 魏昌俊, 等.寄生电感对碳化硅MOSFET开关特性的影响[J].半导体技术, 2017, 42(3):194-199. http://d.old.wanfangdata.com.cn/Periodical/bdtjs201703007

    KE J J, ZHAO Z B, WEI C J, et al.Effect of the parasitic inductance on SiC MOSFET switching characteristics[J].Semiconductor Devices, 2017, 42(3):194-199(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/bdtjs201703007
    [15] 秦海鸿, 张英, 朱梓悦, 等.寄生电容对SiC MOSFET开关特性的影响[J].中国科技论文, 2017, 12(23):2708-2714. doi: 10.3969/j.issn.2095-2783.2017.23.012

    QIN H H, ZHANG Y, ZHU Z Y, et al.Influence of parasitic capacitance on switching characteristics of SIC MOSFET[J].China Sciencepaper, 2017, 12(23):2708-2714(in Chinese). doi: 10.3969/j.issn.2095-2783.2017.23.012
    [16] CHEN K, ZHAO Z, YUAN L, et al.The impact of nonlinear junction capacitance on switching transient and its modeling for SiC MOSFET[J].IEEE Transactions on Electron Devices, 2015, 62(2):333-338. doi: 10.1109/TED.2014.2362657
  • 加载中
图(19) / 表(1)
计量
  • 文章访问数:  2622
  • HTML全文浏览量:  121
  • PDF下载量:  545
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-04-04
  • 录用日期:  2019-06-22
  • 网络出版日期:  2020-01-20

目录

    /

    返回文章
    返回
    常见问答