留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

空间激光干涉引力波探测器轨道修正方法

黄文涛 师鹏 赵育善 武海雷

黄文涛, 师鹏, 赵育善, 等 . 空间激光干涉引力波探测器轨道修正方法[J]. 北京航空航天大学学报, 2020, 46(3): 598-607. doi: 10.13700/j.bh.1001-5965.2019.0177
引用本文: 黄文涛, 师鹏, 赵育善, 等 . 空间激光干涉引力波探测器轨道修正方法[J]. 北京航空航天大学学报, 2020, 46(3): 598-607. doi: 10.13700/j.bh.1001-5965.2019.0177
HUANG Wentao, SHI Peng, ZHAO Yushan, et al. Orbit correction method of space-based laser interferometric gravitational wave detector[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(3): 598-607. doi: 10.13700/j.bh.1001-5965.2019.0177(in Chinese)
Citation: HUANG Wentao, SHI Peng, ZHAO Yushan, et al. Orbit correction method of space-based laser interferometric gravitational wave detector[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(3): 598-607. doi: 10.13700/j.bh.1001-5965.2019.0177(in Chinese)

空间激光干涉引力波探测器轨道修正方法

doi: 10.13700/j.bh.1001-5965.2019.0177
基金项目: 

国家自然科学基金 11572019

上海航天科技创新基金 SAST2017095

详细信息
    作者简介:

    黄文涛 男, 硕士研究生。主要研究方向:航天器动力学与控制

    师鹏 男, 博士, 讲师, 硕士生导师。主要研究方向:航天器总体设计、航天器动力学与控制

    通讯作者:

    师鹏.E-mail: shipeng@buaa.edu.cn

  • 中图分类号: V412.4

Orbit correction method of space-based laser interferometric gravitational wave detector

Funds: 

National Natural Science Foundation of China 11572019

Shanghai Aerospace Science and Technology Innovation Fund SAST2017095

More Information
  • 摘要:

    针对空间激光干涉引力波探测器轨道修正问题,提出一种基于虚拟编队构型设计的航天器轨道修正方法。空间激光干涉引力波探测器由3颗航天器组成等边三角形构型。由于入轨误差和摄动的影响,探测器的构型不稳定。假设名义轨道上运行着一颗理想航天器,实际轨道上的真实航天器与之组成虚拟编队,探测器的3颗真实航天器分别与对应的理想航天器组成3个虚拟编队。考虑探测器构型稳定性要求和摄动的影响,对虚拟编队的构型进行设计,进而求解航天器平均轨道要素修正量。求解得到的航天器平均轨道要素修正量小于偏差量,轨道修正通过四脉冲控制实现。数值仿真结果表明,该方法通过部分轨道修正满足了探测器的构型稳定性要求,具有减少燃料消耗、延长任务寿命的潜力。

     

  • 图 1  天琴计划轨道构型示意图

    Figure 1.  Schematic of orbital configuration for TianQin

    图 2  天琴计划虚拟编队示意图

    Figure 2.  Schematic of virtual formation for TianQin

    图 3  天琴计划虚拟编队构型几何关系示意图

    Figure 3.  Schematic of geometric relationship of virtual formation configuration for TianQin

    图 4  天琴计划虚拟编队构型(30 d)

    Figure 4.  Virtual formation configuration for TianQin (30 d)

    图 5  天琴计划等边三角形构型稳定性参数变化曲线

    Figure 5.  Curves of stability parameters of equilateral triangular configuration for TianQin

    图 6  轨道修正后的天琴计划虚拟编队构型(30 d)

    Figure 6.  Virtual formation configuration for TianQin after orbit correction (30 d)

    图 7  轨道修正后的天琴计划等边三角形构型稳定性参数变化曲线

    Figure 7.  Curves of stability parameters of equilateral triangular configuration for TianQin after orbit correction

    表  1  天琴计划航天器名义轨道要素[11]

    Table  1.   Nominal orbital elements of spacecraft for TianQin[11]

    航天器 a/km e i/(°) Ω/(°) ω/(°) M/(°)
    S1 100 000 0 74.39 211.58 0 0
    S2 100 000 0 74.39 211.58 0 120
    S3 100 000 0 74.39 211.58 0 240
    下载: 导出CSV

    表  2  天琴计划等边三角形构型稳定性指标[11]

    Table  2.   Stability index of equilateral triangular configuration for TianQin[11]

    参数 ΔL/km Δθ/(°) /(m·s-1)
    大小要求 < 1 500 < 1.5 < 9
    下载: 导出CSV

    表  3  平均轨道要素偏差

    Table  3.   Deviation of mean orbital elements

    航天器 σa/km σe σi/(°) σΩ/(°) σω/(°) σM/(°)
    S1 7 0.001 -0.04 0.03 0.03 -0.05
    S2 5 0.001 0.04 -0.03 -0.02 0.04
    S3 -8 0.001 0.05 0.02 -0.04 0.03
    下载: 导出CSV

    表  4  平均轨道要素修正量

    Table  4.   Correction value of mean orbital elements

    航天器 Δa/km Δe Δi/(°) ΔΩ/(°) Δω/(°) ΔM/(°)
    S1 -7.001 4 0 0 0 0 0.011 9
    S2 -4.998 6 0 0 0 0 -0.011 9
    S3 8.001 8 0 0 0 0 0.004 6
    下载: 导出CSV

    表  5  轨道修正速度脉冲

    Table  5.   Velocity pulse for orbit correction

    航天器 Vh, uh) Vr1, ur) Vt, ΔVr2, ur+π)
    S1 (0 m/s, -) (-0.103 9 m/s, -90°) (-0.069 9 m/s, -0.103 9 m/s, 90°)
    S2 (0 m/s, -) (0.103 9 m/s, -90°) (-0.049 9 m/s, 0.103 9 m/s, 90°)
    S3 (0 m/s, -) (-0.040 2 m/s, -90°) (0.079 9 m/s, -0.040 2 m/s, 90°)
    下载: 导出CSV
  • [1] 罗子人, 白姗, 边星, 等.空间激光干涉引力波探测[J].力学进展, 2013, 43(4):415-447. http://d.old.wanfangdata.com.cn/Periodical/twxjz201501004

    LUO Z R, BAI S, BIAN X, et al.Space laser interferometry gravitational wave detection[J].Advances in Mechanics, 2013, 43(4):415-447(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/twxjz201501004
    [2] WEBER J.Observation of the thermal fluctuations of a gravitational-wave detector[J].Physical Review Letters, 1966, 17(24):1228-1230. doi: 10.1103/PhysRevLett.17.1228
    [3] BLAIR D, JU L, ZHAO C N, et al.Gravitational wave astronomy:The current status[J].Science China Physics Mechanics & Astronomy, 2015, 58(12):120402. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0221825959/
    [4] ABBOTT B P, ABBOTT R, ABBOTT T D, et al.Observation of gravitational waves from a binary black hole merger[J].Physical Review Letters, 2016, 116(6):061102. doi: 10.1103/PhysRevLett.116.061102
    [5] CORNELISSE J W.LISA mission and system design[J].Classical and Quantum Gravity, 1996, 13(11A):A251-A258. doi: 10.1088/0264-9381/13/11A/034
    [6] ARMANO M, AUDLEY H, BAIRD J, et al.Beyond the required LISA free-fall performance:New LISA pathfinder results down to 20 μHz[J].Physical Review Letters, 2018, 120(6):061101. doi: 10.1103/PhysRevLett.120.061101
    [7] WU A M, NI W T.Deployment and simulation of the ASTROD-GW formation[J].International Journal of Modern Physics D, 2013, 22(1):1341005. doi: 10.1142/S0218271813410058
    [8] JIN G.Program in space detection of gravitational wave in Chinese Academy of Sciences[C]//11th International LISA Symposium.Bristol: IOP Publishing, 2017, 840(1): 012009.
    [9] LUO J, CHEN L S, DUAN H Z, et al.TianQin:A space-borne gravitational wave detector[J].Classical and Quantum Gravity, 2016, 33(3):035010. doi: 10.1088/0264-9381/33/3/035010
    [10] HU X C, LI X H, WANG Y, et al.Fundamentals of the orbit and response for TianQin[J].Classical and Quantum Gravity, 2018, 35(9):095008. doi: 10.1088/1361-6382/aab52f
    [11] 万小波, 张晓敏, 黎明.天琴计划轨道构型长期漂移特性分析[J].中国空间科学技术, 2017, 37(3):110-116. http://d.old.wanfangdata.com.cn/Periodical/zgkjkxjs201703014

    WAN X B, ZHANG X M, LI M.Analysis of long-period drift characteristics for orbit configuration of TianQin Mission[J].Chinese Space Science and Technology, 2017, 37(3):110-116(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/zgkjkxjs201703014
    [12] YE B B, ZHANG X, ZHOU M Y, et al.Optimizing orbits for TianQin[J].International Journal of Modern Physics D, 2019, 28(9):1950121. doi: 10.1142/S0218271819501219
    [13] YANG C, ZHNAG H.Formation flight design for a LISA-like gravitational wave observatory via Cascade optimization[J].Astrodynamics, 2019, 3(2):155-171. doi: 10.1007/s42064-018-0042-9
    [14] 唐文林.中国空间引力波探测计划卫星轨道设计的初步研究[D].北京: 中国科学院大学, 2014: 17-31.

    TANG W L, Preliminary study of the orbit design of the Chinese mission to detect the gravitational wave in space[D].Beijing: University of Chinese Academy of Sciences, 2014: 17-31(in Chinese).
    [15] WANG G, NI W T.Orbit optimization for ASTROD-GW and its time delay interferometry with two arms using CGC ephemeris[J].Chinese Physics B, 2013, 22(4):571-579. http://d.old.wanfangdata.com.cn/OAPaper/oai_arXiv.org_1205.5175
    [16] 刘林, 汤靖师.卫星轨道理论与应用[M].北京:电子工业出版社, 2015:227-243.

    LIU L, TANG J S.Theory and application of satellite orbit[M].Beijing:Publishing House of Electronics Industry, 2015:227-243(in Chinese).
    [17] PRADO B D A, FERNANDO A.Third-body perturbation in orbits around natural satellites[J].Journal of Guidance, Control, and Dynamics, 2003, 26(1):33-40. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=5817fa93351ace7e47d84e6b5548b5fa
    [18] 杜耀珂, 杨盛庆, 完备, 等.近地卫星严格回归轨道保持控制[J].航空学报, 2018, 39(12):322449. http://d.old.wanfangdata.com.cn/Periodical/hkxb201812029

    DU Y K, YANG S Q, WAN B, et al.Strictly-regressive orbit maintenance control of near earth satellites[J].Acta Aeronautica et Astronautica Sinica, 2018, 39(12):322449(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/hkxb201812029
    [19] 孟云鹤.航天器编队飞行导论[M].北京:国防工业出版社, 2014:28-32.

    MENG Y H.Introduction to spacecraft formation flying[M].Beijing:National Defense Industry Press, 2014:28-32(in Chinese).
    [20] HOU X Y, ZHAO Y H, LIU L.Formation flying in elliptic orbits with the J2 perturbation[J].Research in Astronomy and Astrophysics, 2012, 12(11):1563. doi: 10.1088/1674-4527/12/11/010
    [21] ROSCOE C W T, VADALI S R, ALFRIEND K T.Third-body perturbation effects on satellite formations[J].Journal of the Astronautical Sciences, 2013, 60(3-4):408-433. doi: 10.1007/s40295-015-0057-x
    [22] 曹喜滨, 张锦绣, 王峰.航天器编队动力学与控制[M].北京:国防工业出版社, 2013:103-121.

    CAO X B, ZHANF J X, WANG F.The dynamics and control of spacecraft formation flying[M].Beijing:National Defense Industry Press, 2013:103-121(in Chinese).
  • 加载中
图(7) / 表(5)
计量
  • 文章访问数:  509
  • HTML全文浏览量:  44
  • PDF下载量:  120
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-04-22
  • 录用日期:  2019-10-11
  • 网络出版日期:  2020-03-20

目录

    /

    返回文章
    返回
    常见问答